Description

Solution

实际上添加问题就是一个线段树区间覆盖问题,打标记就好

对于弹栈操作比较难搞,实际上也就是一个历史查询,我们不需要保存栈中的每一个元素,我们通过查找历史状态就可以了

这样用主席树维护复杂度是 \(O(n*logn)\) 的

具体是这样的:

假设我们要弹出位置 \(x\) 的栈顶元素,那么在线段树中维护一个值 \(t\),表示最近的一次修改是 \(t\) 时刻

那么上上次修改就可以通过查询 \(t-1\) 时刻的 \(t\) 找出,相当于保存了一个前驱

用主席树维护这个时间就好了

注意内存有些卡,有一些技巧:

1.首先对于查询的线段树是全局的,不需要动态开点

2.对于线段树中的一个节点 \(x\) ,如果它的左右儿子都没有儿子,那么下一次做区间覆盖时,就不需要对 \(x\) 新建两个节点

#include<bits/stdc++.h>
#define lo (o<<1)
#define ro (o<<1|1)
using namespace std;
const int N=5e5+10;
int n,m,ty,rt[N],a[N],tt=0;
struct data{
int ls,rs,lag;
data(){lag=-1;}
}tr[N*130];
int T[N*4],la[N*4],in[N*130];
inline void pushdown(int o){
if(tr[o].lag==-1)return ;
int t=tr[o].lag;tr[o].lag=-1;
if(!in[o] || in[tr[o].ls] || in[tr[o].rs]){
tr[++tt]=tr[tr[o].ls];tr[o].ls=tt;
tr[++tt]=tr[tr[o].rs];tr[o].rs=tt;in[o]=1;
}
int ls=tr[o].ls,rs=tr[o].rs;
tr[ls].lag=t;tr[rs].lag=t;
}
inline void Push(int o,int l,int r){
if(la[o]==-1)return ;
int k=la[o],mid=(l+r)>>1;la[o]=-1;
T[lo]=k*(mid-l+1);la[lo]=k;
T[ro]=k*(r-mid);la[ro]=k;
}
inline void upd(int o){T[o]=T[lo]+T[ro];}
inline int qry(int o,int l,int r,int sa,int se){
if(sa<=l && r<=se)return T[o];
int mid=(l+r)>>1,ret=0;
Push(o,l,r);
if(se<=mid)ret=qry(lo,l,mid,sa,se);
else if(sa>mid)ret=qry(ro,mid+1,r,sa,se);
else ret=qry(lo,l,mid,sa,mid)+qry(ro,mid+1,r,mid+1,se);
upd(o);
return ret;
}
inline int qt(int x,int l,int r,int sa){
if(l==r)return tr[x].lag;
int mid=(l+r)>>1,ret=0;
pushdown(x);in[x]=1;
if(sa<=mid)ret=qt(tr[x].ls,l,mid,sa);
else ret=qt(tr[x].rs,mid+1,r,sa);
return ret;
}
inline void add(int o,int l,int r,int sa,int se,int t){
if(sa<=l && r<=se){T[o]=(r-l+1)*t;la[o]=t;return ;}
Push(o,l,r);
int mid=(l+r)>>1;
if(se<=mid)add(lo,l,mid,sa,se,t);
else if(sa>mid)add(ro,mid+1,r,sa,se,t);
else add(lo,l,mid,sa,mid,t),add(ro,mid+1,r,mid+1,se,t);
upd(o);
}
inline void addtag(int &x,int l,int r,int sa,int se,int t){
tr[++tt]=tr[x];x=tt;
if(sa<=l && r<=se){tr[x].lag=t;return ;}
pushdown(x);
int mid=(l+r)>>1;in[x]=1;
if(se<=mid)addtag(tr[x].ls,l,mid,sa,se,t);
else if(sa>mid)addtag(tr[x].rs,mid+1,r,sa,se,t);
else addtag(tr[x].ls,l,mid,sa,mid,t),addtag(tr[x].rs,mid+1,r,mid+1,se,t);
}
int main(){
freopen("railway.in","r",stdin);
freopen("railway.out","w",stdout);
cin>>n>>m>>ty;
int op,l,r,ans=0,x,y;
memset(la,-1,sizeof(la));
for(int i=1;i<=m;i++){
rt[i]=rt[i-1];
scanf("%d%d",&op,&l);
l=(l+ans*ty)%n+1;
if(op==1){
scanf("%d",&r);
r=(r+ans*ty)%n+1;
if(l>r)swap(l,r);
printf("%d\n",ans=qry(1,1,n,l,r));
}
else if(op==2){
x=qt(rt[i],1,n,l);
if(x){
y=qt(rt[x-1],1,n,l);
addtag(rt[i],1,n,l,l,y);add(1,1,n,l,l,a[y]);
}
}
else if(op==3){
scanf("%d%d",&r,&a[i]);
r=(r+ans*ty)%n+1;
if(l>r)swap(l,r);
add(1,1,n,l,r,a[i]);
addtag(rt[i],1,n,l,r,i);
}
}
return 0;
}

UOJ #218. 【UNR #1】火车管理的更多相关文章

  1. UNR #1 火车管理

    很简单 用一个线段树维护 1.答案 2.当前栈顶是什么时候push进来的 然后用一棵以时间为版本的可持久化线段树维护每个操作之后第一个覆盖到他的操作是哪个 就可以了 询问直接在线段树上询问,修改在两棵 ...

  2. 【UNR #1】火车管理(主席树)

    [UNR #1]火车管理(主席树) 好好的代码被 \(extra\ test\) 卡常了...我就放一个目前最快的版本吧... 题意简化: 有 \(n\) 个栈,\(m\) 次操作. 将 \(x\) ...

  3. 「UOJ218」火车管理

    「UOJ218」火车管理 解题思路:观察发现,在弹出 \(x\) 之前,它前面这个元素都是保持不变的,所以可以用一棵可持久化线段树维护每一个栈顶元素的插入时间,每次找到当前时间\(-1\) 的版本就可 ...

  4. [UOJ#128][BZOJ4196][Noi2015]软件包管理器

    [UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...

  5. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

  6. Uoj #218. 【UNR #1】火车管理 可持久化线段树+思维

    Code: #include<bits/stdc++.h> #define maxn 500005 using namespace std; int n,Q,ty,lastans=0; i ...

  7. UOJ 218 火车管理

    http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入 ...

  8. 【UOJ UNR #1】火车管理

    来自FallDream的博客,未经允许,请勿转载,谢谢. 题面 考虑用可持久化线段树直接维护每个点在不同时刻,第一辆车的编号. 这样3操作就变成了区间赋值,1操作变成区间和 2操作的话,只需要查询一下 ...

  9. 【UOJ UNR #1】火车管理 可持久化线段树

    用可持久化线段树维护每个站的第一辆车和每个站的前一次更新的位置即可. #include<iostream> #include<cstring> #include<cstd ...

随机推荐

  1. .net core i上 K8S(五).netcore程序的hostip模式

    上一章讲了pod的管理,今天再分享一个pod的访问方式 1.Pod的HostIP模式 Pod的HostIP模式,可以通过宿主机访问pod内的服务,创建yaml文件如下 apiVersion: v1 k ...

  2. 网站运维之 使用IIS日志分析器1.03.exe进行IIS服务器日志分析

    引言 对于网站运维是一个比较要细心有耐心的工作,当一个网站从开发到上线后,后期的维护也很关键,特别是对于引流的网站来说更是至关重要. 对于网站运维的内容大致可以分为: SEO流量监控方面:风险防控:访 ...

  3. Major OSL changes to catch up

    flat_map optimization for runtime specialization: https://github.com/imageworks/OpenShadingLanguage/ ...

  4. “全栈2019”Java第八十二章:嵌套接口能否访问外部类中的成员?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  5. maven(私库)上传jar包

    在实际开发过程中,我们经常会遇到需要引用的jar依赖,在我们公司的maven仓库不存在,这个时候我们就需要把jar上传上去,在项目中添加对应依赖就OK了. 步骤1:下载jar 在http://mvnr ...

  6. Windows IIS ASP.NET Core中创建和使用HTTPS自签名证书

    为什么要用Https就不说了. 第一步:创建自签名的证书.在Windows下开启PowerShell,将以下文字粘贴进去: # setup certificate properties includi ...

  7. luoguP3359 改造异或树

    https://www.luogu.org/problemnew/show/P3359 因为 a ^ b ^ b = a,所以我们预处理 1 到所有点的距离,将删边的操作反过来变成加边,对于每一个联通 ...

  8. 木马APP的简单分析(Android Killer分析)

    本文作者:三星s7edge 一.此贴目的:分析一个木马APP样本的行为.—————————————————————————————————————————————————-二.分析步骤及结果: 文件名 ...

  9. docker 创建容器的时候的坑

    其实这个题目的话,对于我后面陈述的问题发生的本身并没有太多的联系,但是因为是在docker创建容器的操作之内发生的,所以记录以下 因为网上有些文章有些作者喜欢使用git的命令窗体,说实在的,公司里面用 ...

  10. ElasticSearch 常用设置

    2.2.0的启动和6.几 启动路径.端口一样,但是进入Head的路径不一样 http://localhost:9200/ 进入Head的方式2.2 的在 http://localhost:9200/_ ...