Description

Solution

实际上添加问题就是一个线段树区间覆盖问题,打标记就好

对于弹栈操作比较难搞,实际上也就是一个历史查询,我们不需要保存栈中的每一个元素,我们通过查找历史状态就可以了

这样用主席树维护复杂度是 \(O(n*logn)\) 的

具体是这样的:

假设我们要弹出位置 \(x\) 的栈顶元素,那么在线段树中维护一个值 \(t\),表示最近的一次修改是 \(t\) 时刻

那么上上次修改就可以通过查询 \(t-1\) 时刻的 \(t\) 找出,相当于保存了一个前驱

用主席树维护这个时间就好了

注意内存有些卡,有一些技巧:

1.首先对于查询的线段树是全局的,不需要动态开点

2.对于线段树中的一个节点 \(x\) ,如果它的左右儿子都没有儿子,那么下一次做区间覆盖时,就不需要对 \(x\) 新建两个节点

#include<bits/stdc++.h>
#define lo (o<<1)
#define ro (o<<1|1)
using namespace std;
const int N=5e5+10;
int n,m,ty,rt[N],a[N],tt=0;
struct data{
int ls,rs,lag;
data(){lag=-1;}
}tr[N*130];
int T[N*4],la[N*4],in[N*130];
inline void pushdown(int o){
if(tr[o].lag==-1)return ;
int t=tr[o].lag;tr[o].lag=-1;
if(!in[o] || in[tr[o].ls] || in[tr[o].rs]){
tr[++tt]=tr[tr[o].ls];tr[o].ls=tt;
tr[++tt]=tr[tr[o].rs];tr[o].rs=tt;in[o]=1;
}
int ls=tr[o].ls,rs=tr[o].rs;
tr[ls].lag=t;tr[rs].lag=t;
}
inline void Push(int o,int l,int r){
if(la[o]==-1)return ;
int k=la[o],mid=(l+r)>>1;la[o]=-1;
T[lo]=k*(mid-l+1);la[lo]=k;
T[ro]=k*(r-mid);la[ro]=k;
}
inline void upd(int o){T[o]=T[lo]+T[ro];}
inline int qry(int o,int l,int r,int sa,int se){
if(sa<=l && r<=se)return T[o];
int mid=(l+r)>>1,ret=0;
Push(o,l,r);
if(se<=mid)ret=qry(lo,l,mid,sa,se);
else if(sa>mid)ret=qry(ro,mid+1,r,sa,se);
else ret=qry(lo,l,mid,sa,mid)+qry(ro,mid+1,r,mid+1,se);
upd(o);
return ret;
}
inline int qt(int x,int l,int r,int sa){
if(l==r)return tr[x].lag;
int mid=(l+r)>>1,ret=0;
pushdown(x);in[x]=1;
if(sa<=mid)ret=qt(tr[x].ls,l,mid,sa);
else ret=qt(tr[x].rs,mid+1,r,sa);
return ret;
}
inline void add(int o,int l,int r,int sa,int se,int t){
if(sa<=l && r<=se){T[o]=(r-l+1)*t;la[o]=t;return ;}
Push(o,l,r);
int mid=(l+r)>>1;
if(se<=mid)add(lo,l,mid,sa,se,t);
else if(sa>mid)add(ro,mid+1,r,sa,se,t);
else add(lo,l,mid,sa,mid,t),add(ro,mid+1,r,mid+1,se,t);
upd(o);
}
inline void addtag(int &x,int l,int r,int sa,int se,int t){
tr[++tt]=tr[x];x=tt;
if(sa<=l && r<=se){tr[x].lag=t;return ;}
pushdown(x);
int mid=(l+r)>>1;in[x]=1;
if(se<=mid)addtag(tr[x].ls,l,mid,sa,se,t);
else if(sa>mid)addtag(tr[x].rs,mid+1,r,sa,se,t);
else addtag(tr[x].ls,l,mid,sa,mid,t),addtag(tr[x].rs,mid+1,r,mid+1,se,t);
}
int main(){
freopen("railway.in","r",stdin);
freopen("railway.out","w",stdout);
cin>>n>>m>>ty;
int op,l,r,ans=0,x,y;
memset(la,-1,sizeof(la));
for(int i=1;i<=m;i++){
rt[i]=rt[i-1];
scanf("%d%d",&op,&l);
l=(l+ans*ty)%n+1;
if(op==1){
scanf("%d",&r);
r=(r+ans*ty)%n+1;
if(l>r)swap(l,r);
printf("%d\n",ans=qry(1,1,n,l,r));
}
else if(op==2){
x=qt(rt[i],1,n,l);
if(x){
y=qt(rt[x-1],1,n,l);
addtag(rt[i],1,n,l,l,y);add(1,1,n,l,l,a[y]);
}
}
else if(op==3){
scanf("%d%d",&r,&a[i]);
r=(r+ans*ty)%n+1;
if(l>r)swap(l,r);
add(1,1,n,l,r,a[i]);
addtag(rt[i],1,n,l,r,i);
}
}
return 0;
}

UOJ #218. 【UNR #1】火车管理的更多相关文章

  1. UNR #1 火车管理

    很简单 用一个线段树维护 1.答案 2.当前栈顶是什么时候push进来的 然后用一棵以时间为版本的可持久化线段树维护每个操作之后第一个覆盖到他的操作是哪个 就可以了 询问直接在线段树上询问,修改在两棵 ...

  2. 【UNR #1】火车管理(主席树)

    [UNR #1]火车管理(主席树) 好好的代码被 \(extra\ test\) 卡常了...我就放一个目前最快的版本吧... 题意简化: 有 \(n\) 个栈,\(m\) 次操作. 将 \(x\) ...

  3. 「UOJ218」火车管理

    「UOJ218」火车管理 解题思路:观察发现,在弹出 \(x\) 之前,它前面这个元素都是保持不变的,所以可以用一棵可持久化线段树维护每一个栈顶元素的插入时间,每次找到当前时间\(-1\) 的版本就可 ...

  4. [UOJ#128][BZOJ4196][Noi2015]软件包管理器

    [UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...

  5. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

  6. Uoj #218. 【UNR #1】火车管理 可持久化线段树+思维

    Code: #include<bits/stdc++.h> #define maxn 500005 using namespace std; int n,Q,ty,lastans=0; i ...

  7. UOJ 218 火车管理

    http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入 ...

  8. 【UOJ UNR #1】火车管理

    来自FallDream的博客,未经允许,请勿转载,谢谢. 题面 考虑用可持久化线段树直接维护每个点在不同时刻,第一辆车的编号. 这样3操作就变成了区间赋值,1操作变成区间和 2操作的话,只需要查询一下 ...

  9. 【UOJ UNR #1】火车管理 可持久化线段树

    用可持久化线段树维护每个站的第一辆车和每个站的前一次更新的位置即可. #include<iostream> #include<cstring> #include<cstd ...

随机推荐

  1. typescript多维对象数组仿List泛型

    定义对象: namespace entity{ export class MyClass{ public value:number; public rect:string; public constr ...

  2. python学习之路 二 :基本数据类型

    本节重点 理解什么是变量? 掌握各种数据类型 理解可变类型和不可变类型 一.变量和常量 变量: 作用:存贮程序的中间结果在内存里,以备后边的程序调用 定义规范: 变量名只能是 字母.数字活下划线的任意 ...

  3. Java的进程内缓存框架:EhCache

    EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider.   Ehcache缓存的特点: 1. 快速. 2. 简单. 3. 多种 ...

  4. 【Selenium专题】高亮显示页面元素

    高亮显示页面元素主要用到Selenium中使用js的知识点,最常用的是检查元素定位是否正确.此外,实现js的调用大大增强了Selenium的功能.以下是调试通过的案例: import org.open ...

  5. 514. Freedom Trail

    In the video game Fallout 4, the quest "Road to Freedom" requires players to reach a metal ...

  6. 参照跟老男孩学linux运维搭建nagios实验小结

        nagios效果示例 http://192.168.0.236/nagios       用户名:hong     密码:123   一. 服务端安装准备   1. 更新源 cd /etc/y ...

  7. bootstrap-table教程演示

    Bootstrap Admin 效果展示 Table of contents Create Remove Update Export Tree Create 相关插件 bootstrap-valida ...

  8. Mac 更改/usr/bin 目录权限失败

    对于Mac OS X 10.11 El Capitan用户,由于系统启用了SIP(System Integrity Protection), 导致root用户也没有权限修改/usr/bin目录.按如下 ...

  9. 数据结构65:快速排序算法(QSort,快排)

    上节介绍了如何使用起泡排序的思想对无序表中的记录按照一定的规则进行排序,本节再介绍一种排序算法——快速排序算法(Quick Sort). C语言中自带函数库中就有快速排序——qsort函数 ,包含在 ...

  10. 自定义View实现钟摆效果进度条PendulumView

    转载请注明出处:http://blog.csdn.net/fightlei/article/details/52556755 在网上看到了一个IOS组件PendulumView,实现了钟摆的动画效果. ...