Rooted Trees

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on Vrepresented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).


Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and xis a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.


Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k cc2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

有根树的存储, 根据数据看出不是二叉树, 故用孩子兄弟表示法存储(左孩子, 右兄弟)

利用递归求树的深度时, 若是左孩子则深度加一, 右孩子(兄弟节点)还是当前深度

#include <iostream>
using namespace std;
#define MAX 100005
#define NIL -1 struct Node {
int parent;
int left;
int right;
}; Node T[MAX];
int n, D[MAX]; void print(int u)
{
int i, c;
cout << "node " << u << ": ";
cout << "parent = " << T[u].parent << ", ";
cout << "depth = " << D[u] << ", "; if(T[u].parent == NIL)
{
cout << "root, ";
}
else if(T[u].left == NIL)
{
cout << "leaf, ";
}
else
{
cout << "internal node, ";
} cout << "["; for(i = 0, c = T[u].left; c != NIL; ++ i, c = T[c].right)
{
if(i) cout << ", ";
cout << c;
} cout << "]" << endl;
} // 递归求深度
void rec(int u, int p)
{
D[u] = p;
if(T[u].right != NIL)
{
rec(T[u].right, p);
}
if(T[u].left != NIL)
{
rec(T[u].left, p + 1);
}
} int main()
{
int i, j, d, v, c, l, r;
cin >> n;
for(i = 0; i < n; ++ i)
{
T[i].parent = T[i].left = T[i].right = NIL;
} for(i = 0; i < n; ++ i)
{
cin >> v >> d;
for(j = 0; j < d; ++ j)
{
cin >> c;
if(j == 0)
{
T[v].left = c; // 父节点的左孩子为c
}
else
{
T[l].right = c; // 当前兄弟节点为c
}
l = c; // 记录前一个兄弟节点
T[c].parent = v;
}
}
for(i = 0; i < n; ++ i)
{
if(T[i].parent == NIL)
{
r = i;
}
} rec(r, 0); for(i = 0; i < n; ++ i)
{
print(i);
} return 0;
} /*
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
*/

  

Tree - Rooted Trees的更多相关文章

  1. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  2. 【Aizu - ALDS1_7_A】Rooted Trees(树的表达)

    Rooted Trees Descriptions: A graph G = (V, E) is a data structure where V is a finite set of vertice ...

  3. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

随机推荐

  1. 总结—angularjs项目

    我毕业了-------有点期待生活,又点害怕生活. 总结下最近一个月做的这个项目,项目的开发形式也比较新颖,采用的是前后端分离的形式.我负责前端的管理系统开发,另一个哥们负责利用ABP创建接口,整合后 ...

  2. java实现Redis分布式锁

    网上到处都是分布式锁的代码,基本都是通过setNX 和 expire 这两个不是原子操作,肯定会有问题,不乏好多人通过用setNX的value当做过期时间来弥补等等.但是好像都不太好,或者多少有点问题 ...

  3. Linux From Scratch(从零开始构建Linux系统,简称LFS)(二)

    七. 构建临时系统 1. 通用编译指南 a. 确认是否正确设置了 LFS 环境变量 echo $LFS b. 假定你已经正确地设置了宿主系统需求和符号链接 c. 对于每个软件包: (1). 确保解压软 ...

  4. clean code 第一章笔记

    我们都曾有过这样的经历:自己写的烂程序竟然可以运行,然后就认为能运行的烂代码总比什么都没有强.还会有这样的想法:总有一天我会修改它.但是,LeBlanc(勒布朗)法则表示:稍后等于永不(Later e ...

  5. k8s安装部署过程个人总结及参考文章

    以下是本人安装k8s过程 一.单机配置 1. 环境准备 主机名 IP 配置 master1 192.168.1.181 1C 4G 关闭所有节点的seliux以及firewalld sed -i 's ...

  6. Redis(什么是Redis?)

    Redis是一个开源的内存数据库,可以作为缓存也可以作为消息队列.它支持的数据结构有:字符串.哈希表.列表.集合.有序集合. Redis:Redis是Remote Dictionary Server( ...

  7. java JDBC链接sqlserver/mysql/oracle

    今天初学数据库的一些简单创建数据库和表,并进行简单的查询,插入. 接下学习的就是java工程中怎么链接数据库呢.主要的方法和用到的类如下. 切记,mysql需要的jar包 mysql-connecto ...

  8. MARS3.6 Programming

    An Assembly Language I.D.E. To Engage Students Of All Levels * A Tutorial *2007 CCSC: Central Plains ...

  9. Android常用的图片加载库

     Android常用的图片加载库 前言:图片加载涉及到图片的缓存.图片的处理.图片的显示等.四种常用的图片加载框架,分别是Fresco.ImageLoader. Picasso. Glide. Uni ...

  10. flask框架下的jinja2模板引擎(1)(模板渲染)

    #转载请留言联系 模板是什么? 在 flask 框架中,视图函数有两个作用:处理业务逻辑和返回响应内容.在大型应用中,把业务逻辑和表现内容放在一起,会增加代码的复杂度和维护成本.模板作用即是承担视图函 ...