Tree - Rooted Trees
Rooted Trees
A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a binary relation on Vrepresented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).
Fig. 1
A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."
Your task is to write a program which reports the following information for each node u of a given rooted tree T:
- node ID of u
- parent of u
- depth of u
- node type (root, internal node or leaf)
- a list of chidlren of u
If the last edge on the path from the root r of a tree T to a node x is (p, x), then p is the parent of x, and xis a child of p. The root is the only node in T with no parent.
A node with no children is an external node or leaf. A nonleaf node is an internal node
The number of children of a node x in a rooted tree T is called the degree of x.
The length of the path from the root r to a node x is the depth of x in T.
Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.
Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.
Fig. 2
Input
The first line of the input includes an integer n, the number of nodes of the tree.
In the next n lines, the information of each node u is given in the following format:
id k c1 c2 ... ck
where id is the node ID of u, k is the degree of u, c1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.
Output
Print the information of each node in the following format ordered by IDs:
node id: parent = p , depth = d, type, [c1...ck]
p is ID of its parent. If the node does not have a parent, print -1.
d is depth of the node.
type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.
c1...ck is the list of children as a ordered tree.
Please follow the format presented in a sample output below.
Constraints
- 1 ≤ n ≤ 100000
Sample Input 1
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
Sample Output 1
node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []
Sample Input 2
4
1 3 3 2 0
0 0
3 0
2 0
Sample Output 2
node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []
Note
You can use a left-child, right-sibling representation to implement a tree which has the following data:
- the parent of u
- the leftmost child of u
- the immediate right sibling of u
Reference
Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.
有根树的存储, 根据数据看出不是二叉树, 故用孩子兄弟表示法存储(左孩子, 右兄弟)
利用递归求树的深度时, 若是左孩子则深度加一, 右孩子(兄弟节点)还是当前深度
#include <iostream>
using namespace std;
#define MAX 100005
#define NIL -1 struct Node {
int parent;
int left;
int right;
}; Node T[MAX];
int n, D[MAX]; void print(int u)
{
int i, c;
cout << "node " << u << ": ";
cout << "parent = " << T[u].parent << ", ";
cout << "depth = " << D[u] << ", "; if(T[u].parent == NIL)
{
cout << "root, ";
}
else if(T[u].left == NIL)
{
cout << "leaf, ";
}
else
{
cout << "internal node, ";
} cout << "["; for(i = 0, c = T[u].left; c != NIL; ++ i, c = T[c].right)
{
if(i) cout << ", ";
cout << c;
} cout << "]" << endl;
} // 递归求深度
void rec(int u, int p)
{
D[u] = p;
if(T[u].right != NIL)
{
rec(T[u].right, p);
}
if(T[u].left != NIL)
{
rec(T[u].left, p + 1);
}
} int main()
{
int i, j, d, v, c, l, r;
cin >> n;
for(i = 0; i < n; ++ i)
{
T[i].parent = T[i].left = T[i].right = NIL;
} for(i = 0; i < n; ++ i)
{
cin >> v >> d;
for(j = 0; j < d; ++ j)
{
cin >> c;
if(j == 0)
{
T[v].left = c; // 父节点的左孩子为c
}
else
{
T[l].right = c; // 当前兄弟节点为c
}
l = c; // 记录前一个兄弟节点
T[c].parent = v;
}
}
for(i = 0; i < n; ++ i)
{
if(T[i].parent == NIL)
{
r = i;
}
} rec(r, 0); for(i = 0; i < n; ++ i)
{
print(i);
} return 0;
} /*
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
*/
Tree - Rooted Trees的更多相关文章
- HDU p1294 Rooted Trees Problem 解题报告
http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...
- 【Aizu - ALDS1_7_A】Rooted Trees(树的表达)
Rooted Trees Descriptions: A graph G = (V, E) is a data structure where V is a finite set of vertice ...
- 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees
有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A A graph G = (V, E) is a data structure where V is a finite ...
- 10.3 Implementing pointers and objects and 10.4 Representing rooted trees
Algorithms 10.3 Implementing pointers and objects and 10.4 Representing rooted trees Allocating an ...
- HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)
讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加 1 #include<iostream& ...
- HDU 1294 Rooted Trees Problem
题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...
- [LeetCode] Minimum Height Trees 最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- Minimum Height Trees
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- LeetCode Minimum Height Trees
原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...
随机推荐
- 总结—angularjs项目
我毕业了-------有点期待生活,又点害怕生活. 总结下最近一个月做的这个项目,项目的开发形式也比较新颖,采用的是前后端分离的形式.我负责前端的管理系统开发,另一个哥们负责利用ABP创建接口,整合后 ...
- java实现Redis分布式锁
网上到处都是分布式锁的代码,基本都是通过setNX 和 expire 这两个不是原子操作,肯定会有问题,不乏好多人通过用setNX的value当做过期时间来弥补等等.但是好像都不太好,或者多少有点问题 ...
- Linux From Scratch(从零开始构建Linux系统,简称LFS)(二)
七. 构建临时系统 1. 通用编译指南 a. 确认是否正确设置了 LFS 环境变量 echo $LFS b. 假定你已经正确地设置了宿主系统需求和符号链接 c. 对于每个软件包: (1). 确保解压软 ...
- clean code 第一章笔记
我们都曾有过这样的经历:自己写的烂程序竟然可以运行,然后就认为能运行的烂代码总比什么都没有强.还会有这样的想法:总有一天我会修改它.但是,LeBlanc(勒布朗)法则表示:稍后等于永不(Later e ...
- k8s安装部署过程个人总结及参考文章
以下是本人安装k8s过程 一.单机配置 1. 环境准备 主机名 IP 配置 master1 192.168.1.181 1C 4G 关闭所有节点的seliux以及firewalld sed -i 's ...
- Redis(什么是Redis?)
Redis是一个开源的内存数据库,可以作为缓存也可以作为消息队列.它支持的数据结构有:字符串.哈希表.列表.集合.有序集合. Redis:Redis是Remote Dictionary Server( ...
- java JDBC链接sqlserver/mysql/oracle
今天初学数据库的一些简单创建数据库和表,并进行简单的查询,插入. 接下学习的就是java工程中怎么链接数据库呢.主要的方法和用到的类如下. 切记,mysql需要的jar包 mysql-connecto ...
- MARS3.6 Programming
An Assembly Language I.D.E. To Engage Students Of All Levels * A Tutorial *2007 CCSC: Central Plains ...
- Android常用的图片加载库
Android常用的图片加载库 前言:图片加载涉及到图片的缓存.图片的处理.图片的显示等.四种常用的图片加载框架,分别是Fresco.ImageLoader. Picasso. Glide. Uni ...
- flask框架下的jinja2模板引擎(1)(模板渲染)
#转载请留言联系 模板是什么? 在 flask 框架中,视图函数有两个作用:处理业务逻辑和返回响应内容.在大型应用中,把业务逻辑和表现内容放在一起,会增加代码的复杂度和维护成本.模板作用即是承担视图函 ...