luogu

题意

一个平面上有\(n\)个点,\(m\)次操作,每次新增一个点,或者是询问离某个点最近的点的距离。这里的距离是曼哈顿距离。

\(n,m\le3*10^5\)

sol

写一发\(CDQ\)。

只考虑询问点在其他点的右上方的情况,假设询问点是\(A\),那么所求的距离就是\((X_A-X_i)+(Y_A-Y_i)=(X_A+Y_A)-(X_i+Y_i)\)。

所以我们只需要找出满足\(X_i \le X_A,Y_i \le Y_A\)中\(X_i+Y_i\)的最大值就好了。

\(CDQ\)前先按时间戳排序,向上归并时按\(X\)排序。考虑左边对右边的贡献时,按\(Y\)值为下标插入树状数组,然后查询前缀最大值。

对于不在右上方的情况,只要把坐标轴翻转四次就可以了。

然而。
这题卡常。
以下是一些卡常技巧。
>清空树状数组的时候,如果当前位已经是$0$就直接$return$。
预先记录按照时间戳的排序,每次$CDQ$完后直接复制一遍,不需要排序。
删除不必要的点(不会被任何询问考虑到的点)

常数巨大无比。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e6+5;
struct node{
int tim,opt,x,y;
bool operator < (const node &b) const
{
if (x!=b.x) return x<b.x;
if (y!=b.y) return y<b.y;
return opt<b.opt;
}
}a[N],p[N],q[N];
int n,m,X,Y,c[N],ans[N];
inline void modify(int k,int v){while(k<=Y)c[k]=max(c[k],v),k+=k&-k;}
inline int query(int k){int s=0;while(k)s=max(s,c[k]),k-=k&-k;return s;}
inline void clear(int k){while(k<=Y)if(c[k])c[k]=0,k+=k&-k;else return;}
void CDQ(int l,int r)
{
if (l==r) return;
int mid=l+r>>1;CDQ(l,mid);CDQ(mid+1,r);
int L=l,R=mid+1;
for (int i=l;i<=r;++i)
if (L<=mid&&(R>r||p[L]<p[R]))
{
q[i]=p[L++];
if (q[i].opt==1) modify(q[i].y,q[i].x+q[i].y);
}
else
{
q[i]=p[R++];
if (q[i].opt==2)
{
int tmp=query(q[i].y);
if (tmp) ans[q[i].tim]=min(ans[q[i].tim],q[i].x+q[i].y-tmp);
}
}
for (int i=l;i<=r;++i) p[i]=q[i],clear(p[i].y);
}
void Delete()
{
int xx=0,yy=0;m=0;
for (int i=1;i<=n;++i)
if (p[i].opt==2)
xx=max(xx,p[i].x),yy=max(yy,p[i].y);
for (int i=1;i<=n;++i)
if (p[i].x<=xx&&p[i].y<=yy)
q[++m]=p[i];
for (int i=1;i<=m;++i) p[i]=q[i];
}
int main()
{
n=gi();m=gi();memset(ans,63,sizeof(ans));
for (int i=1;i<=n;++i)
{
a[i]=(node){0,1,gi()+1,gi()+1};
X=max(X,a[i].x);Y=max(Y,a[i].y);
}
for (int i=1;i<=m;++i)
{
a[++n]=(node){i,gi(),gi()+1,gi()+1};
X=max(X,a[n].x);Y=max(Y,a[n].y);
}
++X;++Y;
for (int i=1;i<=n;++i) p[i]=a[i];
Delete();CDQ(1,m);
for (int i=1;i<=n;++i) p[i]=a[i],p[i].x=X-p[i].x;
Delete();CDQ(1,m);
for (int i=1;i<=n;++i) p[i]=a[i],p[i].y=Y-p[i].y;
Delete();CDQ(1,m);
for (int i=1;i<=n;++i) p[i]=a[i],p[i].x=X-p[i].x,p[i].y=Y-p[i].y;
Delete();CDQ(1,m);
for (int i=1;i<=n;++i) if (a[i].opt==2) printf("%d\n",ans[a[i].tim]);
return 0;
}

[Luogu4169][Violet]天使玩偶/SJY摆棋子的更多相关文章

  1. luogu4169 [Violet]天使玩偶/SJY摆棋子 / bzoj2648 SJY摆棋子 k-d tree

    k-d tree + 重构的思想,就能卡过luogu和bzoj啦orz #include <algorithm> #include <iostream> #include &l ...

  2. bzoj2716/2648 / P4169 [Violet]天使玩偶/SJY摆棋子

    P4169 [Violet]天使玩偶/SJY摆棋子 k-d tree 模板 找了好几天才发现输出优化错了....真是zz...... 当子树非常不平衡时,就用替罪羊树的思想,拍扁重建. luogu有个 ...

  3. 【LG4169】[Violet]天使玩偶/SJY摆棋子

    [LG4169][Violet]天使玩偶/SJY摆棋子 题面 洛谷 题解 至于\(cdq\)分治的解法,以前写过 \(kdTree\)的解法好像还\(sb\)一些 就是记一下子树的横.纵坐标最值然后求 ...

  4. 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告

    P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...

  5. luoguP4169 [Violet]天使玩偶/SJY摆棋子 K-Dtree

    P4169 [Violet]天使玩偶/SJY摆棋子 链接 luogu 思路 luogu以前用CDQ一直过不去. bzoj还是卡时过去的. 今天终于用k-dtree给过了. 代码 #include &l ...

  6. 洛谷P4169 [Violet]天使玩偶/SJY摆棋子(CDQ分治)

    [Violet]天使玩偶/SJY摆棋子 题目传送门 解题思路 用CDQ分治开了氧气跑过. 将输入给的顺序作为第一维的时间,x为第二维,y为第三维.对于距离一个询问(ax,ay),将询问分为四块,左上, ...

  7. [Violet]天使玩偶/SJY摆棋子 [cdq分治]

    P4169 [Violet]天使玩偶/SJY摆棋子 求离 \((x,y)\) 最近点的距离 距离的定义是 \(|x1-x2|+|y1-y2|\) 直接cdq 4次 考虑左上右上左下右下就可以了-略微卡 ...

  8. P4169 [Violet]天使玩偶/SJY摆棋子

    题目背景 感谢@浮尘ii 提供的一组hack数据 题目描述 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅 ...

  9. LG4169 [Violet]天使玩偶/SJY摆棋子

    题意 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 Ayu 生活的小镇 ...

随机推荐

  1. Nginx 域名跳转

    域名跳转 就是实现URL的跳转和隐藏真实地址,基于Perl语言的正则表达式规范.平时帮助我们实现拟静态,拟目录,域名跳转,防止盗链等 . 域名跳转配置 1.多域名指定一个域名重定向 # 空格分割域名 ...

  2. Linux 上下左右键变成^A,^B,^C,^D解决方法

    用gedit打开 /etc/vim/vimrc.tiny,将里面的 set compatible 改成 set nocompatible 对于退格键backspace的问题,只需在刚才那句话下面加上一 ...

  3. 华为S5700系列交换机AR配置静态IP双链路负载分担

    适用于:有多个以太WAN口的机型. 业务需求: 运营商1分配的接口IP为100.100.1.2,子网掩码为255.255.255.252,网关IP为100.100.1.1. 运营商2分配的接口IP为2 ...

  4. 移植madplay到jz2440【学习笔记】

    平台:jz2440 作者:庄泽彬(欢迎转载,请注明作者) 说明:韦东山一期视频学习笔记 交叉编译工具:arm-linux-gcc (GCC) 3.4.5 PC环境:ubuntu16.04 一.移植ma ...

  5. LeetCode——Find the Difference

    LeetCode--Find the Difference Question Given two strings s and t which consist of only lowercase let ...

  6. 用idea编译器写第一个Java程序——步骤

  7. PAT1073. Scientific Notation (20)

    #include <iostream> using namespace std; string a; int expo; int dotPos; int expoPos; int i; i ...

  8. 多线程-模拟阻塞queue队列

    前阵子学习了多线程,现在进行总结一下,模拟队列. 分析问题: (1)首先需要一个容器存放元素,这里用linkedList队列. (2)每次像容器中添加或删除元素的时候需要计数,所以这里需要一个计数器, ...

  9. 10 个深恶痛绝的 Java 异常

    异常是 Java 程序中经常遇到的问题,我想每一个 Java 程序员都讨厌异常,一 个异常就是一个 BUG,就要花很多时间来定位异常问题. 今天,来列一下 Java 中经常遇到的前 10 个异常,排名 ...

  10. LeetCode第[21][23]题(Java):Merge Sorted Lists

    题目:合并两个已排序链表 难度:Easy 题目内容: Merge two sorted linked lists and return it as a new list. The new list s ...