【BZOJ4596】[Shoi2016]黑暗前的幻想乡

Description

幽香上台以后,第一项措施就是要修建幻想乡的公路。幻想乡有 N 个城市,之间原来没有任何路。幽香向选民承诺要减税,所以她打算只修 N- 1 条路将这些城市连接起来。但是幻想乡有正好 N- 1 个建筑公司,每个建筑公司都想在修路的过程中获得一些好处。
虽然这些建筑公司在选举前没有给幽香钱,幽香还是打算和他们搞好关系,因为她还指望他们帮她建墙。所以她打算让每个建筑公司都负责一条路来修。每个建筑公司都告诉了幽香自己有能力负责修建的路是哪些城市之间的。所以幽香打算选择 N-1 条能够连接幻想乡所有城市的边,然后每条边都交给一个能够负责该边的建筑公司修建,并且每个建筑公司都恰好修一条边。
幽香现在想要知道一共有多少种可能的方案呢?两个方案不同当且仅当它们要么修的边的集合不同,要么边的分配方式不同。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。
接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:
以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

仅一行一个整数,表示所有可能的方案数对 10^9 + 7 取模的结果。

Sample Input

4
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2

Sample Output

17

题解:可以采用2^n的容斥原理,暴力枚举每个公司选或不选,然后将这些公司的边放到一起,用矩阵树定理求出方案数。那么答案就是:

可能全选的-至少不选1个的+至少不选2个的-。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const ll P=1000000007;
ll ans;
int n,S;
vector<int> pa[20],pb[20];
ll v[20][20];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll calc()
{
int i,j,k;
ll A,B,tmp,temp,ret=1;
memset(v,0,sizeof(v));
for(i=1;i<n;i++) if((S>>(i-1))&1) for(j=0;j<(int)pa[i].size();j++)
A=pa[i][j],B=pb[i][j],v[A][B]--,v[B][A]--,v[A][A]++,v[B][B]++;
for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(v[i][j]<0) v[i][j]+=P;
for(i=1;i<n;i++)
{
for(j=i+1;j<n;j++)
{
A=v[i][i],B=v[j][i];
while(B)
{
tmp=A/B,temp=A,A=B,B=temp%B;
for(ret=P-ret,k=i;k<n;k++) v[i][k]=(v[i][k]-tmp*v[j][k]%P+P)%P,swap(v[i][k],v[j][k]);
}
}
ret=ret*v[i][i]%P;
}
return ret;
}
void dfs(int x,int f)
{
if(x==n)
{
ans=(ans+f*calc())%P;
return ;
}
S|=1<<(x-1),dfs(x+1,f);
S^=1<<(x-1),dfs(x+1,-f);
}
int main()
{
n=rd();
int i,a;
for(i=1;i<n;i++)
{
a=rd();
while(a--) pa[i].push_back(rd()),pb[i].push_back(rd());
}
dfs(1,1);
ans=(ans+P)%P;
printf("%lld",ans);
return 0;
}

【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理的更多相关文章

  1. 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理

    题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...

  2. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  3. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  4. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  5. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  6. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  7. BZOJ4596: [Shoi2016]黑暗前的幻想乡

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. 阿里云web播放器

    原文地址:https://help.aliyun.com/document_detail/51991.html?spm=5176.doc61109.6.703.ZTCYoi 一.概念说明 1. pla ...

  2. 转: Tsung:开源多协议分布式负载&压力测试工具

    Main features High Performance: the load can be distributed on a cluster of client machines Multi-pr ...

  3. 用 php 实现一个视图组件和模板引擎——基础

    只要不是做后端接口开发和一些作为守护进程之类的服务器脚本,大多数时候都是在和浏览器打交道,因此合理组织并展现 html 标签是最为常见的工作.一般大家使用框架时,都会自带有一套视图组件和模板引擎. 我 ...

  4. freeswitch与外部网关链接

    我建了一个 Freeswitch 内核研究 交流群, 45211986, 欢迎加入, 另外,提供基于SIP的通信服务器及客户端解决方案, 承接 sip/ims 视频客户端开发,支持接入sip软交换,i ...

  5. 点滴积累【JS】---JS小功能(JS实现模仿微博发布效果)

    效果: 思路: 利用多功能浮动运动框架实现微博效果,首先,将textarea中的属性添加到新创建的li里面然后,再将li添加到ul里面,再利用浮动运动框架将数据动态的显示出来. 代码: <hea ...

  6. CentOS6.x修改主机名,关闭防火墙

    一.centos默认主机名为localhost,不方便管理,此次,我修改为noi. 1.修改网络配置文件:/etc/sysconfig/network 首先,备份一下源文件,注意date命令和加号之间 ...

  7. 李洪强iOS开发之iOS好文章收集

    李洪强iOS开发之iOS好文章收集 该文收集朋友们转发或自己的写的技术文章,如果你也有相关的好文章,欢迎留言,当好文章多的时候,我会对这些好文章进行分门别类 文章 简述 日期 直播服务配置 使用 ng ...

  8. Java反射小结

    一.什么是反射? 在运行状态中,对于任意一个类,都能够获取到这个类的所有属性和方法,对于任意一个对象,都能够调用它的任意一个方法和属性(包括私有的方法和属性),这种动态获取的信息以及动态调用对象的方法 ...

  9. leetcode || 64、Minimum Path Sum

    problem: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom ri ...

  10. 小程序组件与api

    通过组合基础组件进行快速开发. 组件是视图层的基本组成单元. 所有组件都有的属性: 属性名 描述 注解 id 组件的唯一标示 保持整个页面唯一 class 组件的样式类 在对应的 WXSS 中定义的样 ...