【BZOJ4596】[Shoi2016]黑暗前的幻想乡

Description

幽香上台以后,第一项措施就是要修建幻想乡的公路。幻想乡有 N 个城市,之间原来没有任何路。幽香向选民承诺要减税,所以她打算只修 N- 1 条路将这些城市连接起来。但是幻想乡有正好 N- 1 个建筑公司,每个建筑公司都想在修路的过程中获得一些好处。
虽然这些建筑公司在选举前没有给幽香钱,幽香还是打算和他们搞好关系,因为她还指望他们帮她建墙。所以她打算让每个建筑公司都负责一条路来修。每个建筑公司都告诉了幽香自己有能力负责修建的路是哪些城市之间的。所以幽香打算选择 N-1 条能够连接幻想乡所有城市的边,然后每条边都交给一个能够负责该边的建筑公司修建,并且每个建筑公司都恰好修一条边。
幽香现在想要知道一共有多少种可能的方案呢?两个方案不同当且仅当它们要么修的边的集合不同,要么边的分配方式不同。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。
接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:
以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

仅一行一个整数,表示所有可能的方案数对 10^9 + 7 取模的结果。

Sample Input

4
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2

Sample Output

17

题解:可以采用2^n的容斥原理,暴力枚举每个公司选或不选,然后将这些公司的边放到一起,用矩阵树定理求出方案数。那么答案就是:

可能全选的-至少不选1个的+至少不选2个的-。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const ll P=1000000007;
ll ans;
int n,S;
vector<int> pa[20],pb[20];
ll v[20][20];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll calc()
{
int i,j,k;
ll A,B,tmp,temp,ret=1;
memset(v,0,sizeof(v));
for(i=1;i<n;i++) if((S>>(i-1))&1) for(j=0;j<(int)pa[i].size();j++)
A=pa[i][j],B=pb[i][j],v[A][B]--,v[B][A]--,v[A][A]++,v[B][B]++;
for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(v[i][j]<0) v[i][j]+=P;
for(i=1;i<n;i++)
{
for(j=i+1;j<n;j++)
{
A=v[i][i],B=v[j][i];
while(B)
{
tmp=A/B,temp=A,A=B,B=temp%B;
for(ret=P-ret,k=i;k<n;k++) v[i][k]=(v[i][k]-tmp*v[j][k]%P+P)%P,swap(v[i][k],v[j][k]);
}
}
ret=ret*v[i][i]%P;
}
return ret;
}
void dfs(int x,int f)
{
if(x==n)
{
ans=(ans+f*calc())%P;
return ;
}
S|=1<<(x-1),dfs(x+1,f);
S^=1<<(x-1),dfs(x+1,-f);
}
int main()
{
n=rd();
int i,a;
for(i=1;i<n;i++)
{
a=rd();
while(a--) pa[i].push_back(rd()),pb[i].push_back(rd());
}
dfs(1,1);
ans=(ans+P)%P;
printf("%lld",ans);
return 0;
}

【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理的更多相关文章

  1. 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理

    题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...

  2. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  3. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  4. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  5. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  6. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  7. BZOJ4596: [Shoi2016]黑暗前的幻想乡

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. python代码 构建验证码

    1.python代码编写 (随机验证码): #coding: utf-8 import Image, ImageDraw, ImageFont, ImageFilter import string, ...

  2. 教程:VS2010 之TFS入门指南(转载)

    [原文发表地址] Tutorial: Getting Started with TFS in VS2010 [原文发表时间] Wednesday, October 21, 2009 1:00 PM 本 ...

  3. PhpStorm和PHPstudy配置调试参数(Xdebug),问题描述Error. Interpreter is not specified or invalid. Press “Fix” to edit your project configuration.

    配置phpstrom的Xdebug 问题描述: Error. Interpreter is not specified or invalid. Press "Fix" to edi ...

  4. zookeeper(一):功能和原理

    简介 ZooKeeper 是一个开源的分布式协调服务,由雅虎创建,是 Google Chubby 的开源实现.分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅.负载均衡.命名服务.分 ...

  5. python2和python3中str,bytes区别

    python2中,有basestring.str.bytes.unicode四种类型 其中str == bytes ,basestring = (str,unicode) >>> i ...

  6. vs2010 MSDN文档安装方法

    vs2010的MSDN是不能独立安装,必须安装VS2010后才能安装. 安装方法: 1.vs2010的ISO光盘文件中,里面会有个ProductDocumentation文件夹,其实这个就是安装MSD ...

  7. Jquery学习笔记(7)--京东导航菜单

    主要是几个模块的浮动和定位不好处理,另外还缺少右侧导航,及幻灯片. <!DOCTYPE html> <html lang="en"> <head> ...

  8. hive执行更新和删除操作

    Hive从0.14版本开始支持事务和行级更新,但缺省是不支持的,需要一些附加的配置.要想支持行级insert.update.delete,需要配置Hive支持事务. 一.Hive具有ACID语义事务的 ...

  9. Unix系统编程()通用模型以外的操作ioctl

    之前学习到的都是通用的IO模型,现在要学的是一个ioctl系统调用,ioctl为执行文件和设备提供了一种多用途机制. int ioctl(int fd, int request, - /*argp*/ ...

  10. HTML中让表单input等文本框为只读不可编辑但可以获取value值的方法;让文本域前面的内容显示在左上角,居中

      HTML中让表单input等文本框为只读不可编辑的方法 有时候,我们希望表单中的文本框是只读的,让用户不能修改其中的信息,如使input text的内容,中国两个字不可以修改   有时候,我们希望 ...