【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并
【BZOJ3123】[Sdoi2013]森林
Description
Input
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
Output
对于每一个第一类操作,输出一个非负整数表示答案。
Sample Input
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6
Sample Output
2
1
4
2
HINT
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
题解:跟BZOJ2588差不多,只不过变成了森林,所以采用启发式合并,每次将小的树暴力重构,塞到大的树里就行了。
话说这题并不需要并查集,只需要记录一下每个点的树根和这棵树的大小就行了
RE的注意!:
1.testcase是测试点编号!好好读题!所以这东西没有卵用
2.每次重构的时候不要这样写
for(i=1;(1<<i)<n;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
因为原先x的深度可能比重构后的深度要大,所以以前的某些fa值在重构后并没有清掉,导致搜LCA时出错,进而WA->RE
所以必须这样写
for(i=1;i<20;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
这一个错误害我调了一个上午~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=80010;
int n,m,nm,cnt,T,tot,lastans;
int to[maxn<<1],next[maxn<<1],head[maxn],v[maxn],fa[maxn][20],dep[maxn],root[maxn],siz[maxn];
int Log[maxn],rt[maxn],ref[maxn];
struct sag
{
int siz,ls,rs;
}s[maxn*300];
struct node
{
int v,org;
}num[maxn];
char str[10];
bool cmp(node a,node b)
{
return a.v<b.v;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void insert(int x,int &y,int l,int r,int pos)
{
if(pos>r) return ;
y=++tot;
if(l==r)
{
s[y].siz=s[x].siz+1;
return ;
}
int mid=l+r>>1;
if(pos<=mid) s[y].rs=s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos);
else s[y].ls=s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos);
s[y].siz=s[s[y].ls].siz+s[s[y].rs].siz;
}
int query(int a,int b,int c,int d,int l,int r,int k)
{
if(l==r) return ref[l];
int mid=l+r>>1,sm=s[s[a].ls].siz+s[s[b].ls].siz-s[s[c].ls].siz-s[s[d].ls].siz;
if(sm>=k) return query(s[a].ls,s[b].ls,s[c].ls,s[d].ls,l,mid,k);
else return query(s[a].rs,s[b].rs,s[c].rs,s[d].rs,mid+1,r,k-sm);
}
void dfs(int x)
{
siz[root[x]]++;
int i;
for(i=1;i<20;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
insert(rt[fa[x][0]],rt[x],1,nm,v[x]);
for(i=head[x];i!=-1;i=next[i])
if(to[i]!=fa[x][0])
fa[to[i]][0]=x,dep[to[i]]=dep[x]+1,root[to[i]]=root[x],dfs(to[i]);
}
int main()
{
rd();
n=rd(),m=rd(),T=rd();
int i,j,a,b,c,d;
memset(head,-1,sizeof(head));
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(i=1;i<=n;i++) num[i].v=rd(),num[i].org=i;
sort(num+1,num+n+1,cmp);
for(ref[0]=-1,i=1;i<=n;i++)
{
if(num[i].v>ref[nm]) ref[++nm]=num[i].v;
v[num[i].org]=nm;
}
for(i=1;i<=m;i++) a=rd(),b=rd(),add(a,b),add(b,a);
for(i=1;i<=n;i++) if(!root[i]) root[i]=i,dfs(i);
for(i=1;i<=T;i++)
{
scanf("%s",str),a=rd()^lastans,b=rd()^lastans;
if(str[0]=='L')
{
if(siz[root[a]]>siz[root[b]]) swap(a,b);
fa[a][0]=b,dep[a]=dep[b]+1,root[a]=root[b],add(a,b),add(b,a),dfs(a);
}
else
{
c=a,d=b;
if(dep[a]<dep[b]) swap(a,b);
for(j=Log[dep[a]-dep[b]];j>=0;j--) if(dep[a]-(1<<j)>=dep[b]) a=fa[a][j];
if(a!=b)
{
for(j=Log[dep[a]];j>=0;j--)
if(fa[a][j]!=fa[b][j]) a=fa[a][j],b=fa[b][j];
a=fa[a][0];
}
b=rd()^lastans;
lastans=query(rt[c],rt[d],rt[a],rt[fa[a][0]],1,nm,b);
printf("%d\n",lastans);
}
}
return 0;
}
【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并的更多相关文章
- BZOJ3123[Sdoi2013]森林——主席树+LCA+启发式合并
题目描述 输入 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负 ...
- [BZOJ3123][Sdoi2013]森林 主席树+启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当 ...
- [bzoj3123] [SDOI2013]森林 主席树+启发式合并+LCT
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...
- BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]
3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...
- luoguP3302 [SDOI2013]森林 主席树 启发式合并
题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...
- 【BZOJ-3123】森林 主席树 + 启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2738 Solved: 806[Submit][Status] ...
- [SDOI2013]森林 主席树+启发式合并
这题的想法真的很妙啊. 看到题的第一眼,我先想到树链剖分,并把\(DFS\)序当成一段区间上主席树.但是会发现在询问的时候,可能会非常复杂,因为你需要把路径拆成很多条轻链和重链,它们还不一定连续,很难 ...
- 【BZOJ 3123】 [Sdoi2013]森林 主席树启发式合并
我们直接按父子关系建主席树,然后记录倍增方便以后求LCA,同时用并查集维护根节点,而且还要记录根节点对应的size,用来对其启发式合并,然后每当我们合并的时候我们都要暴力拆小的一部分重复以上部分,总时 ...
随机推荐
- xcode9.2 objective-c install (mac 10.12.6)
1. xcode下载: https://download.developer.apple.com/Developer_Tools/Xcode_9.2/Xcode_9.2.xip 2. 点击默认安装即可 ...
- unity, unity中GL.MultMatrix的一个超级bug
GL.MultMatrix与OpenGL固定管线的glMultMatrix函数行为并不一致,不是累乘,而是覆盖. 例如下面例子,本来预期是在(100,100)处画一个方块,而实际效果却是在(0,0)处 ...
- C++父子类继承时的隐藏、覆盖、重载
存在父子类继承关系时,若有同名成员函数同时存在,会发生隐藏.覆盖和重载这几种情况.对于初学者也比较容易混淆,为此,我整理了一下我的个人看法,仅供参考.希望对大家理解有帮助,也欢迎指正. 1.父子类继承 ...
- HTML5 多图上传
HTML5 多图上传 时间 2014-06-05 16:06:29 月小升博客 原文 http://java-er.com/blog/html5-many-image-upload/ 主题 HTM ...
- HDU 1020 Encoding 模拟
Encoding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- c# 遇到的问题,求解?
c# cannot evaluate expression because the code of the current method is optimized.
- spring aop切面编程实现操作日志步骤
1.在spring-mvc.xml配置文件中打开切面开关: <aop:aspectj-autoproxy proxy-target-class="true"/> 注意: ...
- uinty实现玩家尾随鼠标位置平滑旋转角度
首先我们要在场景中加入一个quad平面作为地板, 然后指定Layer为Floor,然后移除mesh renderer组件 然后加入脚本 脚本主要思想是从屏幕中心投出一条射线到地板, 然后获取相应坐标, ...
- hdu3613 Best Reward 扩展kmp or O(n)求最大回文子串
/** 题目:hdu3613 Best Reward 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3613 题意:有一个字符串,把他切成两部分. 如果这部 ...
- hihoCoder #1320 : 压缩字符串 区间dp
/** 题目:hihoCoder #1320 : 压缩字符串 链接:https://hihocoder.com/problemset/problem/1320 描述 小Hi希望压缩一个只包含大写字母' ...