[BZOJ2821]作诗
description
在线询问区间内出现次数为正偶数的数的种数。
data range
\]
solution
分块大法好
首先离散化权值
这种对于权值做询问并且询问放在一起的分块其实很好做
我们首先预处理出以下两个东西:
1:\(s[i][j]\),表示前\(i\)个块内权值为\(j\)的数的个数,这个预处理是\(O(n\sqrt n)\)的
2:\(w[i][j]\),表示第\(i\)个块到第\(j\)个块内我们要查询的信息,
这个我们每次从\(\sqrt n\)个块的块头开始扫一边数组即可,复杂度为\(O(n\sqrt n)\)
查询的时候,首先调用\(w[i][j]\)调用整体块内的信息
对于两边的\(2\sqrt n\)个数,我们可以使用桶+查询整体块内对应权值来获取对应最多\(2\sqrt n\)个权值的信息
于是我们就用时间和空间复杂度均为\(O(n\sqrt n)\)的分块解决了这种题目
Code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "2821"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const int N=100010;
const int M=10000010;
const dd eps=1e-5;
const int inf=2147483647;
const ll INF=1ll<<60;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n,c,Q,m,blk,len,o[N],a[N],b[N],s[352][N],w[352][352],t[N],ans;
int main()
{
n=read();c=read();Q=read();m=350;blk=(n-1)/m+1;
for(RG int i=1;i<=n;i++){o[i]=a[i]=read();b[i]=(i-1)/m+1;}
sort(o+1,o+n+1);len=unique(o+1,o+n+1)-o-1;
for(RG int i=1;i<=n;i++)a[i]=lower_bound(o+1,o+len+1,a[i])-o;
for(RG int i=1;i<=blk;i++){
for(RG int j=1;j<=len;j++)s[i][j]=s[i-1][j];
for(RG int j=(i-1)*m+1;j<=n&&j<=i*m;j++)s[i][a[j]]++;
memset(t,0,sizeof(t));ans=0;
for(RG int j=i;j<=blk;w[i][j]=ans,j++)
for(RG int k=(j-1)*m+1;k<=n&&k<=j*m;k++){
t[a[k]]++;if(t[a[k]]>=2)(t[a[k]]&1)?ans--:ans++;
}
}
ans=0;
while(Q--){
RG int l=(read()+ans)%n+1,r=(read()+ans)%n+1;if(l>r)swap(l,r);
if(b[l]==b[r]){
ans=0;
for(RG int i=l;i<=r;i++)t[a[i]]=0;
for(RG int i=l;i<=r;i++){
t[a[i]]++;if(t[a[i]]>=2)(t[a[i]]&1)?ans--:ans++;
}
}
else{
for(RG int i=l;i==l||i%m!=1;i++)t[a[i]]=0;
for(RG int i=r;i==r||i%m!=0;i--)t[a[i]]=0;
ans=w[b[l]+1][b[r]-1];
for(RG int i=l,ret;i==l||i%m!=1;i++){
if(!t[a[i]])t[a[i]]+=(s[b[r]-1][a[i]]-s[b[l]][a[i]]);
t[a[i]]++;ret=t[a[i]];
if(ret>=2)(ret&1)?ans--:ans++;
}
for(RG int i=r,ret;i==r||i%m!=0;i--){
if(!t[a[i]])t[a[i]]+=(s[b[r]-1][a[i]]-s[b[l]][a[i]]);
t[a[i]]++;ret=t[a[i]];
if(ret>=2)(ret&1)?ans--:ans++;
}
}
printf("%d\n",ans);
}
return 0;
}
[BZOJ2821]作诗的更多相关文章
- BZOJ2821 作诗(Poetize) 【分块】
BZOJ2821 作诗(Poetize) Description 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI ...
- 【分块】BZOJ2821 作诗(Poetize)
2821: 作诗(Poetize) Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 3265 Solved: 951[Submit][Status][ ...
- bzoj2821作诗
http://www.lydsy.com/JudgeOnline/problem.php?id=2821 分块 我们把数列分成$\sqrt{N}$块 记$f[i][j]$表示第i块到第j块的答案,这个 ...
- BZOJ2821 作诗(Poetize) 主席树 bitset
原文链接https://www.lydsy.com/JudgeOnline/problem.php?id=2821 题目传送门 - BZOJ2821 题意 $n$ 个数,$m$ 组询问,每次问 $[l ...
- BZOJ2821 作诗(分块)
和区间众数几乎一模一样的套路. // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include&l ...
- bzoj2821: 作诗(Poetize)
分块 分sqrt(n)块 F[i][j]表示块i到块j的答案 s[i][j]表示数字i在前j块内出现了几次 #include <iostream> #include <cstdio& ...
- BZOJ2821 作诗(Poetize) 分块
题意 算法 经验总结 代码 题意 不带修改,查询数列[1,n]中[l,r]内的出现正偶数次的数的个数, 数列中的数 <= 1e5, n <= 1e5, 强制在线 算法 查询的内容: 区 ...
- 2018.09.30 bzoj2821: 作诗(Poetize)(分块)
传送门 分块经典题目. 先将数列分块. 然后预处理出每两个块之间有多少个数出现了正偶数次. 这样查询的时候对于中间的完整块直接用预处理出的数组搞定. 剩下的暴力枚举求解. 代码: #include&l ...
- [BZOJ2821]作诗(分块)
题意 N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次对于100%的数据,1≤n,c,m≤105 题解 (传说lyd省选的时候看错题 把题看成这个了 从此又多了一道分块神题)把N个数 ...
随机推荐
- NB-IOT使用LWM2M移动onenet对接之MTU最大传输单元设置
1. 最近遇到的一个项目NB-IOT使用LWM2M移动onenet对接,要求设置传输的MTU,因此首先需要搞懂MTU是什么? 以太网的MTU值是1500 bytes,假设发送者的协议高层向IP层发送了 ...
- uvaoj1225Digit Counting(暴力)
Trung is bored with his mathematics homeworks. He takes a piece of chalk and starts writing a sequen ...
- Fiddler使用总结(二)
在上一篇中介绍了Fiddler的基本使用方法.通过上一篇的操作我们可以直接抓取浏览器的数据包.但在APP测试中,我们需要抓取手机APP上的数据包,应该怎么操作呢? Andriod配置方法: .确保手机 ...
- 变量不加 var 声明——掉进坑中,无法自拔!
整整一下午,都在解决 window.onresize 中方法丢失不执行的问题!姿势固定在电脑前,颈椎病都犯了. 前些日子与大家分享了一下关于 防止jquery $(window).resize()多次 ...
- [精通Python自然语言处理] Ch1 - 将句子切分为单词
实验对比了一下三种切分方式: 1,2 : nltk.word_tokenize : 分离缩略词,(“Don't” =>'Do', "n't") 表句子切分的“,” &quo ...
- Catch That Cow(BFS广搜)
Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...
- Thunder团队第三周 - Scrum会议6
Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:宋雨 工作照片: 代秋彤照相,所以图片中没有该同学. 参会成员: 王航:http://www.cnblogs ...
- 总结Canvas和SVG的区别
参考链接: 菜鸟教程 HTML5 内联SVG 经典面试题(讨论canvas与svg的区别) Canvas SVG 通过 JavaScript 来绘制 2D 图形 是一种使用 XML 描述 2D 图形的 ...
- bootstrap列表添加滚动条
有时候列表中数据过多,导致超出页面,影响视觉感受.这时我们需要添加一个滚动条. 初始状态如图: 代码如下: <ul class="list-group"> <li ...
- vue服务端渲染axios预取数据
首先是要参考vue服务端渲染教程:https://ssr.vuejs.org/zh/data.html. 本文主要代码均参考教程得来.基本原理如下,拷贝的原文教程. 为了解决这个问题,获取的数据需要位 ...