【bzoj2435】[NOI2011]道路修建 树形dp
题目描述
在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路。 每条道路的修建都要付出一定的费用, 这个费用等于道路长度乘以道路两端的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4个国家,如果该道路长度为 1,则费用为1×|2 – 4|=2。图中圆圈里的数字表示国家的编号。
由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计算出所需要的费用。请你帮助国王们设计一个这样的软件。
输入
输入的第一行包含一个整数n,表示 W 星球上的国家的数量,国家从 1到n编号。
接下来 n – 1行描述道路建设情况,其中第 i 行包含三个整数ai、bi和ci,表示第i 条双向道路修建在 ai与bi两个国家之间,长度为ci。
输出
输出一个整数,表示修建所有道路所需要的总费用。
样例输入
6
1 2 1
1 3 1
1 4 2
6 3 1
5 2 1
样例输出
20
提示
n = 1,000,000 1≤ai, bi≤n
0 ≤ci≤ 10^6
题解
这题难点在于求节点个数。
由于这是一棵树,每个非根节点与其父节点的连线即为题目中要修建的道路。
于是可以初始化一下每个非根节点与其父节点连线的权值,并递推出每个节点的子树大小size,然后每条道路两端国家个数就为size-(n-size)=2*size-n。
由于栈的限制,普通的dfs树形dp会爆栈,所以采用bfs。
- #include <stdio.h>
- #include <string.h>
- using namespace std;
- int head[1000001] , to[2000003] , next[2000003] , cnt = 1 , fa[1000001] , q[1000001] , qh = 1 , qt = 1 , si[1000001] , val[2000003] , v[1000001];
- long long ans;
- inline int read()
- {
- int num = 0; char ch = getchar();
- while(ch < '0' || ch > '9') ch = getchar();
- while(ch >= '0' && ch <= '9') num = num * 10 + ch - '0',ch = getchar();
- return num;
- }
- void add(int x , int y , long long z){to[cnt] = y; val[cnt] = z; next[cnt] = head[x]; head[x] = cnt ++ ;}
- int abs(int x){return x > 0 ? x : -x;}
- int main()
- {
- int n , i , x , y , z;
- n = read();
- for(i = 1 ; i < n ; i ++ )
- {
- x = read();
- y = read();
- z = read();
- add(x , y , z);
- add(y , x , z);
- }
- q[1] = 1;
- fa[1] = -1;
- while(qh <= qt)
- {
- x = q[qh ++ ];
- for(i = head[x] ; i ; i = next[i])
- {
- y = to[i];
- if(!fa[y])
- {
- q[ ++ qt] = y;
- fa[y] = x;
- si[y] = 1;
- v[y] = val[i];
- }
- }
- }
- for(i = qt ; i >= 2 ; i -- )
- {
- x = q[i];
- si[fa[x]] += si[x];
- ans += (long long)v[x] * abs(2 * si[x] - n);
- }
- printf("%lld\n" , ans);
- return 0;
- }
【bzoj2435】[NOI2011]道路修建 树形dp的更多相关文章
- [luogu2052 NOI2011] 道路修建 (树形dp)
传送门 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 ...
- [noi2011]道路修建 树形dp
这道题可以说是树形dp的入门题,也可以看成是一道检验[树]这个数据结构的题目: 这道题只能bfs,毕竟10^6的复杂度win下肯定爆栈了: 但是最恶心的还不是这个,实测用printf输出 用cout输 ...
- 洛谷P2052 [NOI2011]道路修建(树形DP)
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...
- bzoj 2435: [Noi2011]道路修建 树上 dp
2435: [Noi2011]道路修建 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- P2052 [NOI2011]道路修建——树形结构(水题,大佬勿进)
P2052 [NOI2011]道路修建 这个题其实在dfs里面就可以把事干完的,(我一开始还拿出来求了一把)…… 一条边的贡献就是儿子的大小和n-siz[v]乘上边权: #include<cma ...
- BZOJ2435 [Noi2011]道路修建 【树形Dp 吧。。】
题目 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1条双向道路. 每条道路的修 ...
- BZOJ2435:[NOI2011]道路修建 (差分)
Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1条双向道 ...
- BZOJ2435 NOI2011道路修建
要多简单有多简单.然而不知道为啥在luogu上过不掉. #include<iostream> #include<cstdio> #include<cmath> #i ...
- 【题解】 bzoj2435: [Noi2011]道路修建 (傻逼题)
bzoj2435,懒得复制,戳我戳我 Solution: 模拟即可(有点傻逼啊 Code: //It is coded by Ning_Mew on 5.13 #include<bits/std ...
随机推荐
- 20145207 myeclipse测试
实验博客
- 【BZOJ4753】最佳团体(分数规划,动态规划)
[BZOJ4753]最佳团体(分数规划,动态规划) 题面 BZOJ Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一 ...
- 在线elasticsearch集群批量写入变慢,导致kafka消息消费延迟
写入报错如些: -- ::24.166 [elasticsearch[_client_][listener][T#1]] INFO com.mobanker.framework.es.Elastics ...
- PS 给天空添加蓝天白云<转载>
https://jingyan.baidu.com/article/b2c186c8e83b1cc46ef6ffee.html 给图片添加蓝天白云的步骤: 1.打开要加蓝天白云的照片.(如图一) [图 ...
- Git笔记——01
Git - 幕布 Git 教程:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b00 ...
- CSS选择器语法&示例
CSS3 选择器 在 CSS 中,选择器是一种模式,用于选择需要添加样式的元素. "CSS" 列指示该属性是在哪个 CSS 版本中定义的.(CSS1.CSS2 还是 CSS3.) ...
- katalon系列六:Katalon Studio Web UI关键字讲解
在一个Test Case里,点左上Add-Web UI Keyword,可以添加一行新的命令. 像Click.setText.Delay这些最基本的,大家还是看看官方的API文档吧,望文知义,如果是纯 ...
- 接口测试工具postman(八)上传文件接口
涉及到选择文件的接口,在[Body]页签下,key选择File选项,会显示“选择文件”按钮,选择本地的文件
- 第五篇 Flask组件之SQLAchemy及Flask-SQLAlchemy插件/Flask-Script/Flask-migrate/pipreqs模块
SQLAlchemy组件 一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然 ...
- Java enum类型笔记
用途: 定义命令行参数,菜单选项,星期,方向(东西南北)等 与普通类的不同 有默认的方法 value() 每个enum类都已默认继承java.lang.Enum,所以enum类不能继承其他类 构造方法 ...