题面

请务必不要吐槽我的标签

传送门

思路

一个很重要的结论:原序列的一组同构的解等价于同一棵拥有$n$个节点的笛卡尔树

注意笛卡尔树的定义:父亲节点是区间最值,并且分割区间为左右部分

所以如果两个序列的笛卡尔树同构,那么他们的每一个区间最小值位置相同,也就是原题目中的同构条件了

一个很重要的结论:定义笛卡尔树节点的深度为根到这个节点的路径上向左走的次数,那么合法序列的笛卡尔树所有节点深度不超过$m$

首先,我们可以定义区间的父节点是所有最值中最靠左的,那么容易得到,节点的左儿子中的所有权值严格小于当前节点

这样,我们往左走的次数一旦超过了$m$就意味着有$m$以上个不同的数出现在序列中

反之,我们可以证明对于一个没有深度超过$m$的节点的笛卡尔树一定能构造出一组合法的,$m$个数都被用过的解

首先,找到笛卡尔树上的最深链(设其长度为$len$),并把最长链上的节点构造成为$n$到$n-len+1$

然后,不断寻找最深的没有赋值的点,并赋值成为当前没有出现过的数中最小的

最后,对于仍然没有赋值的点,从根开始,令他们等于父亲的权值-1(注意根节点一定被赋值了)

一个很重要的结论:笛卡尔树等价于一个括号序列

于是问题转化为:求合法的括号序列,使其任何一前缀中左括号减掉右括号都小于等于$m$,的数量

这个问题我们可以利用折线法方便的解决:

一个很重要的方法:折线法可以解决括号序列问题

我们令左括号为$(+1,0)$,右括号为$(0,+1)$

那么显然问题被转化成了只在在$y=x$和$y=x+m$两条直线中间运行,最后到达$(n,n)$的不同折线的数量

这个问题中,我们可以容斥:越过一次折线以后我们就把终点关于那条折线对称一下,并乘上一个(-1)的系数

具体详见代码

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
inline int qpow(int a,int b){
int re=1;
while(b){
if(b&1) re=1ll*re*a%MOD;
a=1ll*a*a%MOD;b>>=1;
}
return re;
}
int n,m,ans=0,f[1000010],finv[1000010];
inline void init(){
int i,len=1000000;
f[0]=f[1]=finv[0]=finv[1]=1;
for(i=2;i<=len;i++) f[i]=1ll*f[i-1]*i%MOD;
finv[len]=qpow(f[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
}
inline int C(int x,int y){
// cout<<"C "<<x<<' '<<y<<' '<<f[x]<<' '<<finv[y]<<' '<<finv[x-y]<<'\n';
return 1ll*f[x]*finv[y]%MOD*finv[x-y]%MOD;
}
inline void flip(int &x,int &y,int b){//关于折线翻转
int tx=x,ty=y;
x=ty+b;
y=tx-b;
}
int main(){
n=read();m=read();
if(n<m){puts("0");return 0;}
init();
ans=C(n<<1,n);
int i,x1=0,x2=0,y1=0,y2=0,d1=1,d2=-m-1;
for(i=-1;i;i=-i){
flip(x1,y1,(i>0?d1:d2));//这是两个不同的翻转方向
flip(x2,y2,(i>0?d2:d1));
if((x1>n||y1>n)&&(x2>n||y2>n)) break;
if(x1<=n&&x1>=-n) ans=((ans+i*C(n<<1,n-x1))%MOD+MOD)%MOD;
if(x2<=n&&x2>=-n) ans=((ans+i*C(n<<1,n-x2))%MOD+MOD)%MOD;
}
cout<<ans<<'\n';
}

[2018集训队作业][UOJ424] count [笛卡尔树+括号序列+折线法+组合数学]的更多相关文章

  1. 2018 Multi-University Training Contest 1 H - RMQ Similar Sequence(HDU - 6305 笛卡尔树)

    题意: 对于一个序列a,构造一个序列b,使得两个序列,对于任意的区间 [l, r] 的区间最靠近左端点的那个最大值的位置,并且序列 b 满足 0 < bi < 1. 给定一个序列 a ,求 ...

  2. [模板] 笛卡尔树 && RMQ

    话说我noip之前为什么要学这种东西... 简介 笛卡尔树(Cartesian Tree) 是一种二叉树, 且同时具有以下两种性质: 父亲节点的值大于/小于子节点的值; 中序遍历的结果为原序列. 笛卡 ...

  3. codevs2178 表达式运算Cuties[笛卡尔树]

    2178 表达式运算Cuties  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 给出一个表达 ...

  4. POJ 2559 Largest Rectangle in a Histogram ——笛卡尔树

    [题目分析] 本来是单调栈的题目,用笛卡尔树可以快速的水过去. 把每一个矩阵看成一个二元组(出现的顺序,高度). 然后建造笛卡尔树. 神奇的发现,每一个节点的高度*该子树的大小,就是这一块最大的子矩阵 ...

  5. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

  6. POJ 2201 Cartesian Tree ——笛卡尔树

    [题目分析] 构造一颗笛卡尔树,然后输出这棵树即可. 首先进行排序,然后用一个栈维护最右的树的节点信息,插入的时候按照第二关键字去找,找到之后插入,下面的树成为它的左子树即可. 然后插入分三种情况讨论 ...

  7. POJ 1785 Binary Search Heap Construction(裸笛卡尔树的构造)

    笛卡尔树: 每个节点有2个关键字key.value.从key的角度看,这是一颗二叉搜索树,每个节点的左子树的key都比它小,右子树都比它大:从value的角度看,这是一个堆. 题意:以字符串为关键字k ...

  8. [BZOJ]4199: [Noi2015]品酒大会(后缀数组+笛卡尔树)

    Time Limit: 10 Sec  Memory Limit: 512 MB Description Input Output Sample Input 10 ponoiiipoi 2 1 4 7 ...

  9. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

随机推荐

  1. ORB-SLAM(八)ORBmatcher 特征匹配

    该类负责特征点与特征点之间,地图点与特征点之间通过投影关系.词袋模型或者Sim3位姿匹配.用来辅助完成单目初始化,三角化恢复新的地图点,tracking,relocalization以及loop cl ...

  2. SpringBoot-03:SpringBoot+Idea热部署

      ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 所谓热部署,就是在项目启动中,修改class类中做的修改操作,无需重新启动项目,就可以变更,在网页展示中有 ...

  3. php webservice 可能存在的坑

    场景: 今天在生产机器上调用webservice失败 报 ...failed to load external entity... wget一下地址发现报500错误  把wsdl去掉再wget 发现就 ...

  4. E2E test protractor selenium

    E2E Test和传统的Unit Test不同的是:(1)不涉及代码层面,不会去测试某段代码是否正确或者某行代码是否被覆盖(2)它是从用户的角度出发,用来测试一个应用的流程是否符合预期. 一 Sele ...

  5. Java连接redis集群操作存储、删除以及获取值

    pom文件添加: <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> &l ...

  6. jenkins--Jenkins+Git+coding+maven 实现自动化测试持续集成

    1.打开Jenkins官网,下载jenkins.war https://jenkins.io/download/ 2.将该war包直接放置到Tomcat的webapp下. 3.查看自己Tomcat的端 ...

  7. Jmeter接口测试(二)工具介绍

    一.Jmeter文件目录介绍 ◆ bin:可执行文件目录 Bin 目录文件 jmeter.bat:windows 的启动文件 jmeter.log:日志文件 jmeter.sh:linux 的启动文件 ...

  8. Linux命令应用大词典-第23章 进程和服务管理

    23.1 ps:报告当前进程的快照 23.2 top:显示当前正在运行的进程 23.3 pgrep:按名称和其他属性查找进程 23.4 pidof:查找正在运行的进程的进程号 23.5 pstree: ...

  9. 如何搭建本地svn服务器和搭建本地Git服务器

    搭建git本地服务器使用的软件有很多,例如:gitlab,gitblit,gitbucket,gogs,gitolite,具体比较:http://softlab.sdut.edu.cn/blog/su ...

  10. Java应用基础微专业-设计篇

    第1章--抽象与接口 1.1 抽象 An abstract class can be created without abstract methods, the purpose of doing th ...