传送门

Wa这次竟然不是Uva的题

Description

在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪。现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠。

然而,Farm John的草坪非常脏乱,因此,Farm John只能够让他的奶牛来完成这项工作。Farm John有N只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,奶牛i的效率为E_i。

靠近的奶牛们很熟悉,因此,如果Farm John安排超过K只连续的奶牛,那么,这些奶牛就会罢工去开派对:)。因此,现在Farm John需要你的帮助,计算FJ可以得到的最大效率,并且该方案中没有连续的超过K只奶牛。

Input

第一行:空格隔开的两个整数 N 和 K

第二到 N+1 行:第 i+1 行有一个整数 E_i

Output

第一行:一个值,表示 Farm John 可以得到的最大的效率值。

Sample Input


Sample Output


Hint

n≤100000,E在int范围内。

答案可能需要使用long long存储

Solution

看这小东西长得这么别致题长成这样就差不多是个DP了。考虑状态,设计fi为考虑前i头牛的ans。

考虑这么转移:

  如果选了第i个,那么从i-k-1~i-1个之中就必须不选一个,这样就可以枚举不选的是哪一个,进行转移。

  状态转移方程为:

    fi=max{fj-1+sumi-sumj|j>=i-k-1}

  这么做的时间复杂度为O(nk),在极端情况下n和k同阶,时间复杂度达到了O(n2),于是GG。

考虑优化:

    fi=max{fj-1+sumi-sumj|j>=i-k-1}=sumi+max{fj-1-sumj}

  因为sumi是一个常数,所以转移只与j有关。于是就妥妥的单调队列。最终时间复杂度O(n),可以通过。

Code

#include<cstdio>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[];
} template <typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if(lst=='-') x=-x;
} template <typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<) {putchar('-');x=-x;}
int top=;
do {
IO::buf[++top]=x%+'';
x/=;
}while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T _a,const T _b) {if(_b<_a) return _a;return _b;}
template <typename T>
inline T mmin(const T _a,const T _b) {if(_a>_b) return _b;return _a;}
template <typename T>
inline T mabs(const T _a) {if(_a<) return -_a;return _a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = ; int n,k;
ll frog[maxn];
ll sum[maxn];
ll ans;
int que[maxn];int frt,tal; int main() {
qr(n);qr(k);
for(rg int i=;i<=n;++i) {ll &now=sum[i];qr(now);now+=sum[i-];}
for(rg int i=;i<=n;++i) {
if(frt<=tal&&i-que[frt]>k) ++frt;
rg ll ss=frog[i-]-sum[i];
while(frt<=tal&&ss>=frog[que[tal]-]-sum[que[tal]]) --tal;
que[++tal]=i;
if(i<=k) frog[i]=sum[i];
else frog[i]=sum[i]+frog[que[frt]-]-sum[que[frt]];
ans=mmax(ans,frog[i]);
}
write(ans,'\n',true);
return ;
}

Summary

1、方程复杂度太高是可以尝试对方程进行化简,说不定特殊性质就出来了。

2、找到状态难以枚举前面所有元素时,可以考虑枚举特殊点,比如本题中的断点。

【单调队列】【P2627】 修剪草坪的更多相关文章

  1. P2627 修剪草坪

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  2. 洛谷 P2627 修剪草坪 题解

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  3. P2627 修剪草坪 (单调队列优化$dp$)

    题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...

  4. [洛谷P2627] 修剪草坪

    传送门:>Here< 题意:不能有连续超过$k$个奶牛的一段,求最大的和 思路分析 Dp还是容易看出来的. 我的第一感觉是一维,$f[i]$表示前i头奶牛的最大效率.其实这也是可以解的,具 ...

  5. luogu P2627 修剪草坪

    传送门 单调队列优化dp板子 表示不大想写详细做法,自己看代码吧qwq (懒) 注意细节,不然就会跟我一样WA4次 // luogu-judger-enable-o2 #include<bits ...

  6. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  7. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  8. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  9. BZOJ 2442: [Usaco2011 Open]修剪草坪 单调队列

    Code: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

随机推荐

  1. leetcode-生成括号(回溯算法)

     转载出处:https://blog.csdn.net/yanerhao/article/details/68561290 生成括号     给出 n 代表生成括号的对数,请你写出一个函数,使其能够生 ...

  2. 《Git学习指南》学习笔记(二)

    第三章 提交究竟是什么 每次提交都会生成一个40位的散列值.只要知道散列值,我们就可以恢复到该次提交,这个操作也被称之为检出(checkout)操作. 访问权限与时间戳 Git会保存每个文件原有的访问 ...

  3. 【转】Buff机制及其实际运用

    转自 http://bbs.gameres.com/forum.php?mod=viewthread&tid=215027 首先我想说的是,这是一套机制,并不是单独的一个系统,所谓机制就是一种 ...

  4. Android开发-API指南-<activity>

    <activity> 英文原文:http://developer.android.com/guide/topics/manifest/activity-element.html 采集(更新 ...

  5. appium关键字:

    ## Appium 服务关键字 <expand_table> |关键字|描述|实例||----|-----------|-------||`automationName`|你想使用的自动化 ...

  6. hosts_allow配置了却不生效

    hosts_allow配置了却不生效 配置了两台白名单的机器,一台生效一台不生效,google后的结果都是更新libwrap.so  安装openssh等等..(问题还是没有解决) 经过对比发现,原来 ...

  7. NFC学习总结二

    移动支付这事情热了总归还是会回归理性,就如同之前的10几年间的几次轮回一样.字面上看,移动支付比支付大也不大可能,有相同,有扩展,有交集有不通才是. NFC这事情也是说了快十年了,真心希望它能回归到其 ...

  8. eg_2

    2. 编写一个程序,输出在一个字符串中,指定的字符串出现的次数 第一种方法: public class Test { public static void main(String[] args) { ...

  9. keydown事件下调用trigger事件执行两次

    $('button[type=button]').on('click',login); //登录 $(document).keydown(function(event){ if(event.keyCo ...

  10. lintcode-171-乱序字符串

    171-乱序字符串 给出一个字符串数组S,找到其中所有的乱序字符串(Anagram).如果一个字符串是乱序字符串,那么他存在一个字母集合相同,但顺序不同的字符串也在S中. 注意事项 所有的字符串都只包 ...