http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773

参考1:FWT讲解 https://www.cnblogs.com/RabbitHu/p/9182047.html

参考2:题解 https://www.cnblogs.com/ivorysi/p/9178577.html

(令$\oplus$表示异或)

设$dp[i][j]$表示第$i$天$j$编号城市货物数。

因为只有$i \oplus j$的答案有一个1才能转移,所以$i\oplus j=2^k$

根据异或的性质变成$i\oplus 2^k=j$。

想办法利用它把转移方程写成卷积的形式。

设$b[2^i]=1$,其余都是$0$,于是就有:

$dp[i][j]=dp[i-1][j]+\sum_{a\oplus k=j}dp[i-1][a]*b[k]$

你会发现把$dp$递归展开之后实际上就是一个卷积套卷积……套$t$次的过程,$FWT$运算加快速幂即可。

注意读入输出优化。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=<<;
const int p=1e9+;
const int inv=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
void write(int x){
if(x>)write(x/);
putchar(''+x%);
}
inline int add(int x,int y){
x+=y;if(x>=p)x-=p;return x;
}
inline int sub(int x,int y){
x-=y;if(x<)x+=p;return x;
}
void FWT(int a[],int n,int on){
for(int i=;i<n;i<<=){
for(int j=;j<n;j+=(i<<)){
for(int k=;k<i;k++){
int u=a[j+k],t=a[j+k+i];
a[j+k]=add(u,t);
a[j+k+i]=sub(u,t);
if(on==-){
a[j+k]=(ll)a[j+k]*inv%p;
a[j+k+i]=(ll)a[j+k+i]*inv%p;
}
}
}
}
}
int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
int n,t,m,a[N],b[N];
int main(){
n=read(),t=read(),m=<<n;
for(int i=;i<m;i++)a[i]=read();
for(int i=;i<m;i++){
if(i-(i&-i)==)b[i]=;
}
FWT(a,m,);FWT(b,m,);
for(int i=;i<m;i++)a[i]=(ll)a[i]*qpow(b[i],t)%p;
FWT(a,m,-);
for(int i=;i<m;i++){
write(a[i]);putchar(' ');
}
puts("");
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

51NOD 1773:A国的贸易——题解的更多相关文章

  1. [51Nod 1773] A国的贸易

    [51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...

  2. 【51nod】1773 A国的贸易

    题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...

  3. 「NOIP2009」最优贸易 题解

    「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...

  4. 【51Nod1773】A国的贸易 解题报告

    [51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...

  5. 51nod1773 A国的贸易

    基准时间限制:2 秒 空间限制:524288 KB 分值: 40  A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...

  6. 51nod 1812 树的双直径 题解【树形DP】【贪心】

    老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...

  7. 51Nod1773 A国的贸易 多项式 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...

  8. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  9. 51NOD 1709:复杂度分析——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1709 (我什么时候看到二进制贡献才能条件反射想到按位处理贡献呢……) 参 ...

随机推荐

  1. 写了个汉字转G代码工具,无描边的那种,市面上没有类似的小软件

    学了不少G代码知识, 将公司废旧的三轴非标设备改造成了一个雕刻机,市面上的小软件不好用 网上下的软件有描边的,字体刻起来太粗,这个比较好用,看图应该都能明白吧, 就自己写了个,“少于150字的随笔不允 ...

  2. 新买的 SSD 固态硬盘竟然是坏的,我傻了啊!

    1. 今天早上上班路上在网上下单了一个 1 T 的 SSD 固态硬盘,晚上 7 点半左右送到手后迫不及待想替换掉原来的机械硬盘,在这个新硬盘上装系统,玩起来. 2. 拆开包装,先用移动硬盘接口检查下新 ...

  3. excell 导入 导出

    1.jar包 2.POIUtils工具类 package com.esstglobal.service.utils; import java.io.BufferedInputStream; impor ...

  4. WPF & EF & Prism useful links

    Prism Attributes for MEF https://msdn.microsoft.com/en-us/library/ee155691%28v=vs.110%29.aspx Generi ...

  5. 阿里云中linux 下svn服务器安装

    摘要: 安装步骤如下: 1.yum install subversion 2.输入rpm -ql subversion查看安装位置,如下图:   我们知道svn在bin目录下生成了几个二进制文件. 输 ...

  6. 180620-mysql之数据库导入导出

    文章链接:https://liuyueyi.github.io/hexblog/2018/06/20/180620-mysql之数据库导入导出/ mysql之数据库导入导出 实际工作中,需要做一下数据 ...

  7. ReadyAPI教程和示例(一)

    声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 通过下图你可以快速浏览一下主要的ReadyAPI中SoapUI功能: ​ 一.创建一个功 ...

  8. Java并发基础--ThreadLocal

    一.ThreadLocal定义 ThreadLocal是一个可以提供线程局部变量的类,ThreadLocal为解决多线程程序的并发问题提供了一种新的思路,通过为每个线程提供一个独立的变量副本解决了变量 ...

  9. 聊一聊 Flex 中的 flex-grow、flex-shrink、flex-basis

    在使用 flex 布局的时候难以理解的是 flex-grow.flex-shrink.flex-basis 几个属性的用法,下面通过几个例子来演示. flex-basis flex-basis 用于设 ...

  10. [2017 - 2018 ACL] 对话系统论文研究点整理

    (论文编号及摘要见 [2017 ACL] 对话系统. [2018 ACL Long] 对话系统. 论文标题[]中最后的数字表示截止2019.1.21 google被引次数) 1. Domain Ada ...