Kruskal算法的高效实现需要一种称作并查集的结构。我们在这里不介绍并查集,只介绍Kruskal算法的基本思想和证明,实现留在以后讨论。

Kruskal算法的过程:

(1) 将全部边按照权值由小到大排序。
(2) 按顺序(边权由小到大的顺序)考虑每条边,只要这条边和我们已经选择的边不构成圈,就保留这条边,否则放弃这条边。

算法 成功选择(n-1)条边后,形成一棵最小生成树,当然如果算法无法选择出(n-1)条边,则说明原图不连通。

以下图为例:

边排序后为:
 
1 AF 1
2 DE 4
3 BD 5
4 BC 6
5 CD 10
6 BF 11
7 DF 14
8 AE 16
9 AB 17
10 EF 33
算法处理过程如下:
处理边AF,点A与点F不在同一个集合里,选中AF。
处理边DE,点D与点E不在同一个集合里,选中DE
处理边BD,点B与点D不在同一个集合里,选中BD
处理边BC,点B与点C不在同一个集合里,选中BC

处理边CD,点C与点D在同一个集合里,放弃CD。

处理边BF,点B与点F不在同一个集合里,选中BF。
 
至此,所有的点都连在了一起,剩下的边DF,AE,AB,EF不用继续处理了,算法执行结束。
Kruskal算法的证明。假设图连通,我们证明Krusal算法得到一棵最小生成树。我们假设Kruskal算法得到的树是K (注意我们已经假设Kruskal算法一定可以得到生成树)。假设T是一棵最小生成树,并且K ≠T, K中显然至少有一条边。我们找到在K中,而不在T中最小权值的边e。

把e加入T中,则形成一个圈,删掉这个圈中不在K中的边f,得到新的生成树T’。
f的存在性,如果全里面所有的边都在K中,则K包含圈,矛盾。
考虑边权值关系:
(1) 若w(f) > w(e), 则T’的权值和小于T的权值和,与T是最小生成树矛盾。
(2) 若w(f) < w(e), 说明Kruskal算法在考虑加入e之前先考虑了边f,之所以没加入f是因为f和之前加入的边形成圈,之前加入的边权值显然不超过w(f) (因为加边是从小到大的顺序加入的),所以之前加入的边权值一定小于w(e)。而根据e的定义,K中权值小于w(e)的边都在T中,这说明T中的边会和f构成圈,矛盾。
所以只能w(f) = w(e)。T’仍然是最小生成树,而T’和K相同的边多了一条。
这样下去有限步之后,最终可以把T变为K,从而K也是最小生成树。
 
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。

 
输入

第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
输出
 
输出最小生成树的所有边的权值之和。
 
输入示例

9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
输出示例

37

[贪心经典算法]Kruskal算法的更多相关文章

  1. 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)

    一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...

  2. 最小生成树(Prim算法+Kruskal算法)

    什么是最小生成树(MST)? 给定一个带权的无向连通图,选取一棵生成树(原图的极小连通子图),使生成树上所有边上权的总和为最小,称为该图的最小生成树. 求解最小生成树的算法一般有这两种:Prim算法和 ...

  3. hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)

    还是畅通工程                                                                            Time Limit: 4000/2 ...

  4. 最小生成树Prim算法 Kruskal算法

    Prim算法(贪心策略)N^2 选定图中任意定点v0,从v0开始生成最小生成树 树中节点Va,树外节点Vb 最开始选一个点为Va,其余Vb, 之后不断加Vb到Va最短距离的点 1.初始化d[v0]=0 ...

  5. 最小生成树之算法记录【prime算法+Kruskal算法】【模板】

    首先说一下什么是树: 1.只含一个根节点 2.任意两个节点之间只能有一条或者没有线相连 3.任意两个节点之间都可以通过别的节点间接相连 4.除了根节点没一个节点都只有唯一的一个父节点 5.也有可能是空 ...

  6. 最小生成树 Prim算法 Kruskal算法实现

    最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...

  7. 【431】Prim 算法 & Kruskal 算法

    Prim 算法: Minimum Spanning Tree(MST):最小生成树,就是连接所有节点的最小权值 mst集合与rest集合 mst集合中顶点,找到一条最小权值的边 然后把边相关的顶点,选 ...

  8. 最小生成树Prim算法Kruskal算法

    Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次 ...

  9. 克鲁斯卡尔算法(Kruskal算法)求最小生成树

    题目传送:https://loj.ac/p/10065 1.排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法 2.寻源函数getRoot,寻找某一个点在并查集中的根,注 ...

随机推荐

  1. SSM+poi导入和导出

    最原始数据 导入成功后 下载数据 下载后的数据显示 数据变成16条 点击导出可选择 导了两次  看数据变化 数据库字段在下面地址给出 首先贴出Dao层 List<User> findAll ...

  2. Linux中Elasticsearch集群部署

    1.下载安装包elasticsearch-6.3.1  安装包自己下载,网上很多 2.安装位置在cd /usr/local/elasticsearch/目录下 3.因为ES使用root权限运行会报错, ...

  3. vue中将html字符串转换成html后的一些问题

    今天整理之前做vue项目时遇到的一些问题,发现了当时遇到的一个很小但是又会引出很多问题的一个问题(总之就是很有意思,听我慢慢给你到来),这个问题就是当时处理后端数据时,如何将后端返回来的字符串转换成h ...

  4. 【Spark】源码分析之SparkContext

    一.概述 SaprkContext非常重要,是Spark提交任务到集群的入口 SparkContext中没有main方法,在SparkContext主构造器中,主要做一下四件事情: 1. 调用crea ...

  5. 4-c++教程起航篇-学习笔记

    c++教程起航篇 我们会讲C++那些事,C++与C语言的关系. C++诞生于贝尔实验室. C++之父: 本贾尼·斯特劳斯特卢普 C++社区排行榜 最新排行,c++排名第三,Python排名第四 C++ ...

  6. windows下安装配置redis

    说明:本文拷贝自https://jingyan.baidu.com/article/0f5fb099045b056d8334ea97.html Redis是有名的NoSql数据库,一般Linux都会默 ...

  7. java 字符串与整型相互转换

    如何将字串 String 转换成整数 int? A. 有两个方法: 1). int i = Integer. parseInt ([String]); 或 i = Integer.parseInt ( ...

  8. 创龙DSP6748开发板LED闪烁-第一篇

    1. 首先看下DSP6748的GPIO寄存器的文档,先看下框图,有这个框图,一目了然,输入和输出很清楚 2. 看下寄存器部分,对应上面的图,问题在于,DSP6748有多少个GPIO?最多144个,下一 ...

  9. react组件性能

    一.渲染原理 二.性能优化 三.Immutable在性能优化中的作用

  10. 92套AE抖音快闪模板(精品)

    包含很多场景和类型,直接用即可,下载地址:百度网盘,https://pan.baidu.com/s/1bRFql1zFWyfpTAwa6MhuPA 内容截图: