bzoj 2468: [中山市选2010]三核苷酸
2468: [中山市选2010]三核苷酸
Description
Input
Output
Sample Input
ATATATA
Sample Output
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
const int N=100005;
#define ll long long
char c[N];
int T,n,i,a[N],b[N];
ll s[505],sum[505],cnt[505],s1[505],s2[505],S,ans,Ans;
double fans;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",c+1);
n=strlen(c+1);
for(i=111;i<=444;i++)
s[i]=sum[i]=s1[i]=s2[i]=cnt[i]=0;
for(i=1;i<=n;i++)
{
if(c[i]=='A') a[i]=1;else
if(c[i]=='G') a[i]=2;else
if(c[i]=='C') a[i]=3;else
a[i]=4;
}
for(i=1;i<=n-2;i++)
b[i]=a[i]*100+a[i+1]*10+a[i+2];
for(i=1;i<=n-2;i++)
{
s[b[i]]+=cnt[b[i]]*i*i+s1[b[i]]-s2[b[i]]*i*2;
sum[b[i]]+=cnt[b[i]]*i-s2[b[i]];
s1[b[i]]+=(ll)i*i;
s2[b[i]]+=i;
cnt[b[i]]++;
}
ans=Ans=S=0;
for(i=111;i<=444;i++)
ans+=s[i],Ans+=sum[i],S+=cnt[i]*(cnt[i]-1)/2;
if(S==0) fans=0;else fans=1.0*ans/S-(1.0*Ans/S)*(1.0*Ans/S);
printf("%.6f\n",fans);
}
return 0;
}
bzoj 2468: [中山市选2010]三核苷酸的更多相关文章
- BZOJ 2467: [中山市选2010]生成树 [组合计数]
2467: [中山市选2010]生成树 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 638 Solved: 453[Submit][Status][ ...
- BZOJ2468 : [中山市选2010]三核苷酸
令d[i]为第i个样本数据,cnt为样本个数,经过化简可得 \[ans=\frac{\sum(d[i]^2)}{cnt}-(\frac{\sum d[i]}{cnt})^2\] 枚举每一种可能的三核苷 ...
- BZOJ 2467: [中山市选2010]生成树
有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
- BZOJ 2467 [中山市选2010]生成树(组合数学)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2467 [题目大意] 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
- bzoj 2441 [中山市选2011]小W的问题
bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...
- [bzoj2467][中山市选2010]生成树_快速幂
生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...
随机推荐
- 随机森林(Random Forest)详解(转)
来源: Poll的笔记 cnblogs.com/maybe2030/p/4585705.html 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Fores ...
- Spring注解@Resource和@Autowired区别对比、spring扫描的默认bean的Id、程序获取spring容器对象
-------------------------注解扫面的bean的ID问题-------------------------- 0.前提需要明白注解扫描出来的bean的id默认是类名首字母小写,当 ...
- perl6中函数参数(1)
sub F($number is copy){ $number++; say $number; } F(); #下面是错误的 sub F($number){ $number++; say $numbe ...
- [转载]循规蹈矩:快速读懂SQL执行计划的套路与工具
作者介绍 梁敬彬,福富研究院副理事长.公司唯一四星级内训师,国内一线知名数据库专家,在数据库优化和培训领域有着丰富的经验.多次应邀担任国内外数据库大会的演讲嘉宾,在业界有着广泛的影响力.著有多本畅销书 ...
- C++ 模板的用法
C++中的高阶手法就会用到泛型编程,主要有函数模板, 在程序中使用模板的好处就是在定义时不需要指定具体的参数类型,而在使用时确可以匹配其它任意类型, 定义格式如下 template <class ...
- Mysql安装发生「Access denied for user ‘root’@’localhost’ (using password: NO)」错误
参考:http://www.aipacommander.com/entry/2014/05/26/152247 mysql_secure_installation 依赖重置密码
- linux命令(6):tar命令
压缩方法:tar zcvf test.tar.gz test [表示把文件夹目录压缩成test.tar.gz文件保存] 解压方法:tar zxvf test.tar.gz –C /home [表示解压 ...
- DataSet、DataTable、DataRow的数据复制方法
DataSet 对象是支持 ADO.NET的断开式.分布式数据方案的核心对象 ,用途非常广泛.我们很多时候需要使用其中的数据,比如取得一个DataTable的数据或者复制另一个DataTabe中的数据 ...
- NYOJ 201 作业题
作业题 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 小白同学这学期有一门课程叫做<数值计算方法>,这是一门有效使用数字计算机求数学问题近似解的方法与过 ...
- Google的C++开源代码项
转:http://blog.csdn.net/wenrenhua08/article/details/40040903 v8 - V8 JavaScript EngineV8 是 Google 的 ...