bzoj 2468: [中山市选2010]三核苷酸
2468: [中山市选2010]三核苷酸
Description
Input
Output
Sample Input
ATATATA
Sample Output
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
const int N=100005;
#define ll long long
char c[N];
int T,n,i,a[N],b[N];
ll s[505],sum[505],cnt[505],s1[505],s2[505],S,ans,Ans;
double fans;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",c+1);
n=strlen(c+1);
for(i=111;i<=444;i++)
s[i]=sum[i]=s1[i]=s2[i]=cnt[i]=0;
for(i=1;i<=n;i++)
{
if(c[i]=='A') a[i]=1;else
if(c[i]=='G') a[i]=2;else
if(c[i]=='C') a[i]=3;else
a[i]=4;
}
for(i=1;i<=n-2;i++)
b[i]=a[i]*100+a[i+1]*10+a[i+2];
for(i=1;i<=n-2;i++)
{
s[b[i]]+=cnt[b[i]]*i*i+s1[b[i]]-s2[b[i]]*i*2;
sum[b[i]]+=cnt[b[i]]*i-s2[b[i]];
s1[b[i]]+=(ll)i*i;
s2[b[i]]+=i;
cnt[b[i]]++;
}
ans=Ans=S=0;
for(i=111;i<=444;i++)
ans+=s[i],Ans+=sum[i],S+=cnt[i]*(cnt[i]-1)/2;
if(S==0) fans=0;else fans=1.0*ans/S-(1.0*Ans/S)*(1.0*Ans/S);
printf("%.6f\n",fans);
}
return 0;
}
bzoj 2468: [中山市选2010]三核苷酸的更多相关文章
- BZOJ 2467: [中山市选2010]生成树 [组合计数]
2467: [中山市选2010]生成树 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 638 Solved: 453[Submit][Status][ ...
- BZOJ2468 : [中山市选2010]三核苷酸
令d[i]为第i个样本数据,cnt为样本个数,经过化简可得 \[ans=\frac{\sum(d[i]^2)}{cnt}-(\frac{\sum d[i]}{cnt})^2\] 枚举每一种可能的三核苷 ...
- BZOJ 2467: [中山市选2010]生成树
有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
- BZOJ 2467 [中山市选2010]生成树(组合数学)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2467 [题目大意] 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
- bzoj 2441 [中山市选2011]小W的问题
bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...
- [bzoj2467][中山市选2010]生成树_快速幂
生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...
随机推荐
- Centos 7 安装jdk1.7
在linux中安装jdk是很平凡的事情了,刚学习linux给自己留下一笔记.刚安装centos其中可以会附带jdk,但是这并不影响,只要下载自己的jdk然后替换相对应的环境变量即可. 1.下载相对应的 ...
- Java爬取网易云音乐民谣并导入Excel分析
前言 考虑到这里有很多人没有接触过Java网络爬虫,所以我会从很基础的Jsoup分析HttpClient获取的网页讲起.了解这些东西可以直接看后面的"正式进入案例",跳过前面这些基 ...
- Perl6 Bailador框架(3):路径匹配
use v6; use Bailador; =begin pod 注意的是, 当/:one设置时 虽然你有/admin或/about, 但这个/:one不会跟现有的匹配 只跟没有的匹配: 也就是说, ...
- 【Python学习笔记】Coursera课程《Python Data Structures》 密歇根大学 Charles Severance——Week6 Tuple课堂笔记
Coursera课程<Python Data Structures> 密歇根大学 Charles Severance Week6 Tuple 10 Tuples 10.1 Tuples A ...
- (十五)linux下gdb调试
一.gdb常用命令: 命令 描述 backtrace(或bt) 查看各级函数调用及参数 finish 连续运行到当前函数返回为止,然后停下来等待命令 frame(或f) 帧编号 选择栈帧 info(或 ...
- x64dbg
https://x64dbg.com/ https://github.com/x64dbg/x64dbg https://sourceforge.net/projects/x64dbg/files/s ...
- 2015多校第8场 HDU 5382 GCD?LCM! 数论公式推导
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5382 题意:函数lcm(a,b):求两整数a,b的最小公倍数:函数gcd(a,b):求两整数a,b的最 ...
- Python爬虫之百度API调用
调用百度API获取经纬度信息. import requests import json address = input('请输入地点:') par = {'address': address, 'ke ...
- SVN使用详解
一.SVN的使用 项目经理使用,写好项目框架.文档等. 李四(程序员)的使用,在项目经理写好的框架上进行开发. 二.SVN三大指令 Checkout(检出操作): 连接到svn服务器 更新服务器数据到 ...
- form 表单获取所有数据 封装方法
function getFormJson(frm) { var o = {}; var a = $(frm).serializeArray(); $.each(a, function () { if ...