(转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html
HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。
算法流程图如下(这篇论文上的):
下面我再结合自己的程序,表述一遍吧:
1.对原图像gamma校正,img=sqrt(img);
2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率。
3.将图像每16*16(取其他也可以)个像素分到一个cell中。对于256*256的lena来说,就分成了16*16个cell了。
4.对于每个cell求其梯度方向直方图。通常取9(取其他也可以)个方向(特征),也就是每360/9=40度分到一个方向,方向大小按像素边缘强度加权。最后归一化直方图。
5.每2*2(取其他也可以)个cell合成一个block,所以这里就有(16-1)*(16-1)=225个block。
6.所以每个block中都有2*2*9个特征,一共有225个block,所以总的特征有225*36个。
当然一般HOG特征都不是对整幅图像取的,而是对图像中的一个滑动窗口取的。
lena图:
求得的225*36个特征:
matlab代码如下:
clear all; close all; clc; img=double(imread('lena.jpg'));
imshow(img,[]);
[m n]=size(img); img=sqrt(img); %伽马校正 %下面是求边缘
fy=[-1 0 1]; %定义竖直模板
fx=fy'; %定义水平模板
Iy=imfilter(img,fy,'replicate'); %竖直边缘
Ix=imfilter(img,fx,'replicate'); %水平边缘
Ied=sqrt(Ix.^2+Iy.^2); %边缘强度
Iphase=Iy./Ix; %边缘斜率,有些为inf,-inf,nan,其中nan需要再处理一下 %下面是求cell
step=16; %step*step个像素作为一个单元
orient=9; %方向直方图的方向个数
jiao=360/orient; %每个方向包含的角度数
Cell=cell(1,1); %所有的角度直方图,cell是可以动态增加的,所以先设了一个
ii=1;
jj=1;
for i=1:step:m %如果处理的m/step不是整数,最好是i=1:step:m-step
ii=1;
for j=1:step:n %注释同上
tmpx=Ix(i:i+step-1,j:j+step-1);
tmped=Ied(i:i+step-1,j:j+step-1);
tmped=tmped/sum(sum(tmped)); %局部边缘强度归一化
tmpphase=Iphase(i:i+step-1,j:j+step-1);
Hist=zeros(1,orient); %当前step*step像素块统计角度直方图,就是cell
for p=1:step
for q=1:step
if isnan(tmpphase(p,q))==1 %0/0会得到nan,如果像素是nan,重设为0
tmpphase(p,q)=0;
end
ang=atan(tmpphase(p,q)); %atan求的是[-90 90]度之间
ang=mod(ang*180/pi,360); %全部变正,-90变270
if tmpx(p,q)<0 %根据x方向确定真正的角度
if ang<90 %如果是第一象限
ang=ang+180; %移到第三象限
end
if ang>270 %如果是第四象限
ang=ang-180; %移到第二象限
end
end
ang=ang+0.0000001; %防止ang为0
Hist(ceil(ang/jiao))=Hist(ceil(ang/jiao))+tmped(p,q); %ceil向上取整,使用边缘强度加权
end
end
Hist=Hist/sum(Hist); %方向直方图归一化
Cell{ii,jj}=Hist; %放入Cell中
ii=ii+1; %针对Cell的y坐标循环变量
end
jj=jj+1; %针对Cell的x坐标循环变量
end %下面是求feature,2*2个cell合成一个block,没有显式的求block
[m n]=size(Cell);
feature=cell(1,(m-1)*(n-1));
for i=1:m-1
for j=1:n-1
f=[];
f=[f Cell{i,j}(:)' Cell{i,j+1}(:)' Cell{i+1,j}(:)' Cell{i+1,j+1}(:)'];
feature{(i-1)*(n-1)+j}=f;
end
end %到此结束,feature即为所求
%下面是为了显示而写的
l=length(feature);
f=[];
for i=1:l
f=[f;feature{i}(:)'];
end
figure
mesh(f)
(转)matlab练习程序(HOG方向梯度直方图)的更多相关文章
- 【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很 ...
- Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同 ...
- 特征描述子(feature descriptor) —— HOG(方向梯度直方图)
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方 ...
- 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...
- 方向梯度直方图(HOG)和颜色直方图的一些比較
近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对 ...
- HOG(方向梯度直方图)
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測 ...
- 【笔记】HOG (Histogram of Oriented Gradients, 方向梯度直方图)的开源实现
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor h ...
- 梯度直方图(HOG,Histogram of Gradient)
1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该 ...
- 目标检测之hog(梯度方向直方图)---hog简介0
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功 ...
随机推荐
- iOS开发解决 jsonModel 属性跟系统的重复
-(id)initWithDic:(NSDictionary *)dic { if (self = [super init]) { [self setValuesForKeysWithDictiona ...
- Spring Boot(七)扩展分析
前面的章节在分析SpringBoot启动过程中,我们发现SpringBoot使用Spring框架提供的SpringFactoriesLoader这个类,实现检索META-INF/spring.fact ...
- error : Web 项目“RealEstate.Web”的 URL“http://localhost:20000”已配置为将 IIS 用作 Web 服务器,但是当前在 IIS Express W
error : Web 项目"RealEstate.Web"的 URL"http://localhost:20000"已配置为将 IIS 用作 Web 服务器 ...
- 【Docker 命令】- exec命令
docker exec :在运行的容器中执行命令 语法 docker exec [OPTIONS] CONTAINER COMMAND [ARG...] OPTIONS说明: -d:分离模式: 在后台 ...
- window 安装 nvm
下载地址 https://github.com/coreybutler/nvm-windows/releases 设置淘宝镜像 nvm node_mirror https://npm.taobao.o ...
- windows 2008 iis7 上传大文件限制的真正解决办法
以前做了一个网站 ,当时本机测试时上传文件大小没有问题,上G也应该可以,可是放在服务器后只能上传小于30M以下文件,当时基本需要也基本在30M以下,就没有管,后在网上发现原来是window2008本身 ...
- SpringBoot使用servletAPI与异常处理
工程结构: 主方法类: package com.boot.servlet.api.bootservlet; import org.springframework.boot.SpringApplicat ...
- RT-thread内核之空闲线程
空闲线程是系统线程中一个比较特殊的线程,它具有最低的优先级,当系统中无其他线程可运行时,调度器将调度到空闲线程.空闲线程通常是一个死循环,永远不被挂起.RT-Thread实时操作系统为空闲线程提供了钩 ...
- bzoj3676-回文串
给出一个字符串,一个子串的出现值为字串出现次数乘以长度,求所有回文串中最大的出现值. 分析 回文自动机模版题,建出自动机后直接统计即可. 回文自动机 类似于后缀自动机,不过一条边\((u,v,c)\) ...
- BZOJ 1082 栅栏(二分+DFS剪枝)
首先,长度短的木板一定比长度长的木板容易得到,因此若要得到最多的木板,它们必定是所有木板中最短的——可以对木板排序后二分答案(用k表示). 判断是否合法就用搜索,但数据有点大,要用到两个剪枝.一个是若 ...