题目引入:

有n个重量和价值分别为Wi,Vi的物品。从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中的价值总和的最大值。

分析:

首先,我们用最普通的方法,针对每个物品是否放入背包进行搜索。

#include<iostream>
#include<stdio.h>
using namespace std;
int n,W;
int w[100],v[100];
///从第i个物品开始挑选总重量小于j的部分
int res(int i,int j)///i表示第i件物品,j表示的是当前背包的剩余容量
{
int ans;
if(i==n)///已经没有剩余物品了
ans=0;
else if(j<w[i])///当前的背包容量不够放第i件物品
{
ans=res(i+1,j);///直接看第i+1件物品
}
else
{
///看一下到底是第i件物品放还是不放获得的价值大
ans=max(res(i+1,j),res(i+1,j-w[i])+v[i]);
}
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d%d",&w[i],&v[i]);
}
scanf("%d",&W);
printf("%d\n",res(0,W));
return 0;
}

对于这个方法,可以明显的看出来他的搜索深度为n,对于n=4,Wi和Vi分别为{(2,3),(1,2),(3,4),(2,2)}切W为5的情况下,我们看一下res函数的递归执行过程。

从图中我们可以看出res以(3,2)为参数调用了两次,因此我们可以把第一次的计算结果保存下来,就可以在下次直接调用。

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
int n,W;
int w[100],v[100];
int dp[100][100];
///从第i个物品开始挑选总重量小于j的部分
int res(int i,int j)///i表示第i件物品,j表示的是当前背包的剩余容量
{
if(dp[i][j]>0)
return dp[i][j];
int ans;
if(i==n)///已经没有剩余物品了
ans=0;
else if(j<w[i])///当前的背包容量不够放第i件物品
{
ans=res(i+1,j);///直接看第i+1件物品
}
else
{
///看一下到底是第i件物品放还是不放获得的价值大
ans=max(res(i+1,j),res(i+1,j-w[i])+v[i]);
}
return dp[i][j]=ans;
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d%d",&w[i],&v[i]);
}
scanf("%d",&W);
memset(dp,-1,sizeof(dp));
printf("%d\n",res(0,W));
return 0;
}

接下来,我们看一下记忆化数组。记dp(i)(j)为从第i个物品开始挑选总重小于j是,总价值的最大值。因此可得到递推公式:

dp[n][j]=0;
dp[i][j]=dp[i+1][j];///当j<w[i]
dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);///当j>=w[i]

因此可以不用递归函数,直接用递推公式将各项的值计算出来。

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
int n,W;
int w[100],v[100];
int dp[100][100];
void solve()
{
for(int i=n-1; i>=0; i--)
for(int j=0; j<=W; j++)
{
if(j<w[i])
dp[i][j]=dp[i+1][j];
else
dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);
}
}
int main()
{
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d%d",&w[i],&v[i]);
}
scanf("%d",&W);
memset(dp,0,sizeof(dp));
solve();
printf("%d\n",dp[0][W]);
return 0;
}

刚刚讲到的dp中关于i的循环是逆向进行的。如果更改递推关系式的话循环就可以正向进行。

///dp[i][j],表示从0到i这i+1个物品中选出总重量不超过j的物品时总价值的最大值
dp[0][j]=0;
dp[i+1][j]=dp[i][j];/// j<w[i]
dp[i+1][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);//其他

则上面的solve函数进行相应的修改

void solve()
{
for(int i=0;i<n;i++)
for(int j=0; j<=W; j++)
{
if(j<w[i])
dp[i+1][j]=dp[i][j];
else
dp[i+1][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);
}
}

01背包入门 dp的更多相关文章

  1. 九度OJ 1030:毕业bg (01背包、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1814 解决:798 题目描述:     每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为"bg" ...

  2. [LeetCode]494. 目标和、416. 分割等和子集(0-1背包,DP)

    题目一 494. 目标和 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在你有两个符号 + 和 -.对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前 ...

  3. CoderForces 687C The Values You Can Make (01背包,DP)

    题意:给定 n 个硬币和一个值 k,问你在用一些硬币组成面值为 k的这些硬币还能组成多少种其他面值. 析:如果这样说,由这些硬币能组成多少种不同的面值,那么是不是就很熟悉了,这不就是01背包么,这个题 ...

  4. 九度OJ 1123:采药 (01背包、DP、DFS)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2705 解决:1311 题目描述: 辰辰是个很有潜能.天资聪颖的孩子,他的梦想是称为世界上最伟大的医师. 为此,他想拜附近最有威望的医师为师 ...

  5. 九度OJ 1152:点菜问题 (01背包、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1046 解决:543 题目描述: 北大网络实验室经常有活动需要叫外买,但是每次叫外买的报销经费的总额最大为C元,有N种菜可以点,经过长时间的 ...

  6. HDU 1203 I NEED A OFFER (01背包&&概率dp)

    M - I NEED A OFFER! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  7. 01背包----简单DP

    描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要ne ...

  8. 九度OJ 1025:最大报销额 (01背包、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4352 解决:1055 题目描述:     现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C ...

  9. HDU 1203 I NEED A OFFER!(01 背包DP)

    点我看题目 题意 : 中文题不详述. 思路 :类似于01背包的DP,就是放与不放的问题,不过这个要求概率,至少得到一份offer的反面就是一份也得不到,所以先求一份也得不到的概率,用1减掉就可以得到所 ...

随机推荐

  1. hadoop fs 部分命令详解

    1,Hadoop fs –fs [local | <file system URI>]:声明hadoop使用的文件系统,如果不声明的话,使用当前配置文件配置的,按如下顺序查找:hadoop ...

  2. Jmeter系列-自动生成html报告

    从JMeter 3.0开始已支持自动生成动态报告,我们可以更容易根据生成的报告来完成我们的性能测试报告. 如何生成html测试报告 如果未生成结果文件(.jtl),可运行如下命令生成报告: jmete ...

  3. (转)Linux常用性能检测命令

    一.uptime     Uptime命令的显示结果包括服务器已经运行了多长时间,有多少登陆用户和对服务器性能的总体评估(load average).load average值分别记录了上个1分钟,5 ...

  4. C#里面Console.Write()和Console.WriteLine()有什么区别?

    Console.Write()和Console.WriteLine()都是System.Console提供的方法,两着主要用来将输出流由指定的输出装置(默认为屏幕)显示出来.两着间的差异在Consol ...

  5. git & configs

    git & configs https://alvinalexander.com/git/git-show-change-username-email-address https://stac ...

  6. MyBatis原理简介

    1.什么是 MyBatis ? MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyB ...

  7. html5 拖拽练习题

    html5新的拖拽 只支持Internet Explorer 9.Firefox.Opera 12.Chrome 以及 Safari 5 支持拖放. 来一个实例: <!DOCTYPE html& ...

  8. 创建udp服务端对象

    DatagramSocket ds = null;//创建服务器对象 ds = new DatagramSocket(10001);//创建对象并指定端口 byte[] bytes = new byt ...

  9. Give NetScaler a “Tune-Up”

    Give NetScaler a “Tune-Up” https://www.citrix.com/blogs/2014/10/21/give-netscaler-a-tune-up/ To Opti ...

  10. 【题解】SHOI2014概率充电器

    首先发现答案就是每个节点有电的概率之和.有电的概率牵扯太广不好求,所以转化为求没有电的概率.这题最难的部分在于:一个节点如果有电,可以来自儿子,也可以来自父亲.我们考虑将这两个部分分离开来:建立状态 ...