题目链接

开始还以为是尺取。发现行不通。

一看标签二分答案,恍然大悟。

二分一个\(mid\)(实数),把数列里每个数减去\(mid\),然后求前缀和,在用单调队列维护\(sum[i-t\text{~}i-s]\)的最小值,用\(sum[i]\)减去它,如果大于等于\(0\)就说明\(mid\)可行。

#include <cstdio>
#include <algorithm>
using namespace std;
#define INF 2147483647
const int MAXN = 100010;
const double eps = 1e-6;
int n, s, t, head, tail;
int a[MAXN];
int q[MAXN];
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
int Min = INF, Max = -INF;
double l, r, mid, sum[MAXN];
inline int check(double mid){
head = tail = 0;
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + a[i] - mid;
for(int i = s; i <= n; ++i){
int in = i - s;
while(head < tail && sum[in] < sum[q[tail]]) --tail;
q[++tail] = in;
while(head < tail && q[head + 1] < i - t) ++head;
if(sum[i] - sum[q[head + 1]] >= 0) return 1;
}
return 0;
}
int main(){
n = read();
s = read(); t = read();
for(int i = 1; i <= n; ++i){
a[i] = read();
Min = min(Min, a[i]);
Max = max(Max, a[i]);
}
l = Min; r = Max;
while(r - l > eps){
mid = (l + r) / 2.0;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.3lf\n", l);
return 0;
}

【洛谷 P1419】 寻找段落(二分答案,单调队列)的更多相关文章

  1. luoguP1419 寻找段落(二分答案+单调队列)

    题意 给定一个长度为n的序列a1~an,从中选取一段长度在s到t之间的连续一段使其平均值最大.(n<=100000) 题解 二分答案平均值. judge时把每一个a[i]-mid得到b[i] 在 ...

  2. [洛谷P1419] 寻找段落

    一道单调队列的好题 传送门:>Here< 题意:求一个连续子段,其长度在\([S,T]\)之间,使其平均值最大.保留三位小数 解题思路 考虑二分答案,转化为判定问题.设当前二分到\(k\) ...

  3. 洛谷P1419寻找段落

    题目 单调队列+前缀和 #include <bits/stdc++.h> #define N 101001 using namespace std; int n, s, t; int da ...

  4. 洛谷—— P1419 寻找段落

    https://www.luogu.org/problem/show?pid=1419 题目描述 给定一个长度为n的序列a_i,定义a[i]为第i个元素的价值.现在需要找出序列中最有价值的“段落”.段 ...

  5. BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列

    BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...

  6. 洛谷 P3957 跳房子 —— 二分答案+单调队列优化DP

    题目:https://www.luogu.org/problemnew/show/P3957 先二分一个 g,然后判断: 由于转移的范围是一个区间,也就是滑动窗口,所以单调队列优化: 可以先令队尾为 ...

  7. 洛谷P3957 跳房子 题解 二分答案/DP/RMQ

    题目链接:https://www.luogu.org/problem/P3957 这道题目我用到了如下算法: 线段树求区间最大值: 二分答案: DP求每一次枚举答案g时是否能够找到 \(\ge k\) ...

  8. loj 10181 绿色通道 二分答案+单调队列DP

    空题段长度即为单调队列长度区间 每次二分答案进行check即可 #include<bits/stdc++.h> using namespace std; ; const int inf=0 ...

  9. BZOJ5090 组题 BZOJ2017年11月月赛 二分答案 单调队列

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5090 11月月赛A题 题意概括 给出n个数. 求连续区间(长度大于等于k)最大平均值. 题解 这题 ...

  10. [bzoj2806][Ctsc2012]Cheat(后缀自动机(SAM)+二分答案+单调队列优化dp)

    偷懒直接把bzoj的网页内容ctrlcv过来了 2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1943   ...

随机推荐

  1. II 3.1 连接到服务器

    II 3.1 连接到服务器 package socket; import java.io.IOException; import java.io.InputStream; import java.ne ...

  2. iOS- Swift实现UITableView的常见操作

    1.前言   Swift在这就不多介绍了,想必大家都已皆知. 离Swift面世也过了有一个多月的时间. 在闲暇时间我用Swift实现了UITableView的一些常见操作. 基本都是可以用上的,今天在 ...

  3. 【.NET】- async await 异步编程

    为什么需要异步,异步对可能起阻止作用的活动(例如,应用程序访问 Web 时)至关重要. 对 Web 资源的访问有时很慢或会延迟. 如果此类活动在同步过程中受阻,则整个应用程序必须等待. 在异步过程中, ...

  4. Spring Boot 最简单的HelloWorld

    创建一个Spring Boot,可以直接使用构建工具(Maven或Gradle)创建,也可以使用spring.io网站创建,一般会选择使用spring.io创建 使用IDEA创建一个Spring Bo ...

  5. MATLAB中的randi函数

    randi Pseudorandom integers from a uniform discrete distribution.来自一个均匀离散分布的伪随机整数 R = randi(IMAX,N) ...

  6. 【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树

    题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...

  7. BZOJ4241 历史研究(莫队)

    如果分块的话与区间众数没有本质区别.这里考虑莫队. 显然莫队时的删除可以用堆维护,但多了一个log不太跑得过. 有一种叫回滚莫队的trick,可以将问题变为只有加入操作.按莫队时分的块依次处理,一块中 ...

  8. P4035 [JSOI2008]球形空间产生器

    题目描述 有一个球形空间产生器能够在 nn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nn 维球体中,你只知道球面上 n+1n+1 个点的坐标,你需要以最快的速度确定这个 nn 维球体的球心坐 ...

  9. Hadoop运行Jar文件时Output错误

    当第二次运行Jar程序时,出现Output文件已存在的Exception: Exception in thread "main" org.apache.hadoop.mapred. ...

  10. (转)java +libsvm 安装与测试:

    libsvm 用SVM实现简单线性分类  (转自:http://www.cnblogs.com/freedomshe/archive/2012/10/09/2717356.html) 0. 下载lib ...