http://www.cnblogs.com/lichen782/p/leetcode_maximal_rectangle.html

题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

leetcode的题目真是越来越经典了。比如这个题目,就是一道男默女泪的题。

一般人拿到这个题目,除非做过类似的,很难一眼找出一个方法来,更别说找一个比较优化的方法了。

首先一个难点就是,你怎么判断某个区域就是一个矩形呢?

其次,以何种方式来遍历这个2D的matrix呢?

一般来说,对这种“棋盘式”的题目,像什么Queen啦,象棋啦,数独啦,如果没有比较明显的遍历方式,可以采用一行一行地遍历。(好像废话哦。。。)

然后,当遍历到(i, j)的时候,该做什么样的事情呢?想想,嗯,那我可不可以简单看看,以(i,j)为矩形左上角,能不能形成一个矩形,能不能形成多个矩形?那形成的矩形中,我们能不能找一个最大的呢?(有同学问,为毛你要以这个点为左上角,不为左下角,或者其他脚哩?因为我们打算从左到右,从上到下一行一行遍历嘛,这样就不会漏掉,说不定还能做一些优化)

首先,如果(i, j)是0,那肯定没法是矩形了。

如果是1,那么我们怎么找以它为左上角的矩形呢?呼唤画面感!

。。。你TM在逗我?==b

图中圈圈表示左上角的1,那么矩形的可能性是。。。太多啦,怎么数嘛!

我们可以试探地从左上角的1所在的列开始,往下数数,然后呢,比如在第一行,例如是蓝色的那个矩形,我们看看在列上,它延伸了多远,这个面积是可以算出来的。

然后继续,第二行,例如是那个红色的矩形,再看它延伸到多远,哦,我们知道,比第一行近一些,我们也可以用当前离第一行的行数,乘以延伸的距离,得到当前行表示的矩形面积。

但是到了第一个虚线的地方,它远远超过了上面的其他所有行延伸的距离了,注意它的上方都是空心的哦,所以,我们遇到这种情况,计算当前行和左上角1围成的面积的时候,只能取所有前面最小的延伸距离乘以当前离第一行的行数。其实,这对所有情况都是这样的,是吧?于是,我们不是就有方法遍历这些所有的矩形了嘛。

代码如下:

 1     /**
2 * 以给出的坐标作为左上角,计算其中的最大矩形面积
3 * @param matrix
4 * @param row 给出坐标的行
5 * @param col 给出坐标的列
6 * @return 返回最大矩形的面积
7 */
8 private int maxRectangle(char[][] matrix, int row, int col) {
9 int minWidth = Integer.MAX_VALUE;
10 int maxArea = 0;
11 for (int i = row; i < matrix.length && matrix[i][col] == '1'; i++) {
12 int width = 0;
13 while (col + width < matrix[row].length
14 && matrix[i][col + width] == '1') {
15 width++;
16 }
17 if (width < minWidth) {// 如果当前宽度小于了以前的最小宽度,更新它,为下面的矩形计算做准备
18 minWidth = width;
19 }
20 int area = minWidth * (i - row + 1);
21 if (area > maxArea)
22 maxArea = area;
23 }
24 return maxArea;
25 }

这样,我们再对每个点都调用一下上面的这个方法,不是就能求出最大面积了么。

解法一:

public int maximalRectangle(char[][] matrix) {
// Start typing your Java solution below
// DO NOT write main() function
int m = matrix.length;
int n = m == 0 ? 0 : matrix[0].length;
int maxArea = 0;
for(int i = 0; i < m; i++){//row
for(int j = 0; j < n; j++){//col
if(matrix[i][j] == '1'){
int area = maxRectangle(matrix, i, j);
if(area > maxArea) maxArea = area;
}
}
}
return maxArea;
}

这个需要O(n3),所以没有通过大集合的测试。

leetcode的讨论组给出了一个比较难理解的方法,这里就不采用了。

说说第三个方法。前一个笔记,我们讨论了柱状图的最大矩形面积,那可以O(n)的,学以致用呀!btw,leetcode的这两题也是挨一块儿的,用心良苦。。。。

如果我们把每一行看成x坐标,那高度就是从那一行开始往上数的1的个数。带入我们的maxAreaInHist方法,在O(n2)时间内就可以求出每一行形成的“柱状图”的最大矩形面积了。它们之中最大的,就是我们要的答案。

代码如下:

 public int maximalRectangle2(char[][] matrix) {
int m = matrix.length;
int n = m == ? : matrix[].length;
int[][] height = new int[m][n + ];
//actually we know that height can just be a int[n+1],
//however, in that case, we have to write the 2 parts together in row traverse,
//which, leetcode just doesn't make you pass big set
//所以啊,leetcode是喜欢分开写循环的,即使时间复杂度一样,即使可以节约空间
int maxArea = ;
for(int i = ; i < m; i++){
for(int j = ; j < n; j++) {
if(matrix[i][j] == ''){
height[i][j] = ;
}else {
height[i][j] = i == ? : height[i - ][j] + ;
}
}
}
for(int i = ; i < m; i++){
int area = maxAreaInHist(height[i]);
if(area > maxArea){
maxArea = area;
}
}
return maxArea;
} private int maxAreaInHist(int[] height){
Stack<Integer> stack = new Stack<Integer>();
int i = ;
int maxArea = ;
while(i < height.length){
if(stack.isEmpty() || height[stack.peek()] <= height[i]){
stack.push(i++);
}else {
int t = stack.pop();
maxArea = Math.max(maxArea, height[t] * (stack.isEmpty() ? i : i - stack.peek() - ));
}
}
return maxArea;
}

这里有一个和leetcode相关的细节。就是本来在计算height数组的时候,我们没有必要分配成代码中的那个样子,一维就可以了,然后在遍历每一行的时候计算当前行的height数组,然后再计算maxArea。这种情况下还是过不了大集合,所以不得不为每一行都保存一个height,先期计算该二维数组。

总结:

1. 学到的新知识要用;

2. 画面感和逻辑分析都很重要,不可偏非。

LeetCode-Maximal Rectangle [学以致用] ZZ的更多相关文章

  1. leetcode Maximal Rectangle 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052721.html 题目链接:leetcode Maximal Rectangle 单调栈 ...

  2. LeetCode: Maximal Rectangle 解题报告

    Maximal RectangleGiven a 2D binary matrix filled with 0's and 1's, find the largest rectangle contai ...

  3. LeetCode 笔记系列 18 Maximal Rectangle [学以致用]

    题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones ...

  4. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  5. [leetcode]Maximal Rectangle @ Python

    原题地址:https://oj.leetcode.com/problems/maximal-rectangle/ 题意:Given a 2D binary matrix filled with 0's ...

  6. [LeetCode] Maximal Rectangle

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  7. [LeetCode] Maximal Rectangle(good)

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  8. leetcode -- Maximal Rectangle TODO O(N)

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  9. 求解最大矩形面积 — leetcode 85. Maximal Rectangle

    之前切了道求解最大正方形的题,题解猛戳 这里.这道题 Maximal Rectangle 题意与之类似,但是解法完全不一样. 先来看这道题 Largest Rectangle in Histogram ...

随机推荐

  1. PHP Variable handling 函数

    Variable handling 函数: boolval — 获取变量的布尔值debug_zval_dump — 将内部zend值的字符串表示转储为输出doubleval — floatval 的别 ...

  2. 在win7系统设置SQL Server2014 express为远程数据

    如何设置远程访问到SQLserver服务器(局域网内的设置) 1.首先,使用Windows+R键 输入services.msc 打开本地服务. *说明:①MSSQLSERVER是正式使用的SQL创建实 ...

  3. python3.5+ asyncio await异步详解

    import asyncio,time from collections import defaultdict from pprint import pprint collect=defaultdic ...

  4. mysql 02

    CREATE TABLE emp(eid INT,ename VARCHAR(20),egender CHAR(2),ebirthday DATE,eemail CHAR(10),eramark VA ...

  5. Golang框架beego和bee的开发使用

    Golang语言简洁.明细,语法级支持协程.通道.err,非常诱惑人.平时也看了看Golang的语法,正苦于没有需求,我想把beego的源码搬过来看看. 首先,第一步:beego环境的搭建 在我之前看 ...

  6. (转)【面试】【MySQL常见问题总结】【03】

    [常见面试问题总结目录>>>] [面试][MySQL常见问题总结][03] 2016-05-29 22:20 阅读(8244) 评论(2) [面试][MySQL常见问题总结][02] ...

  7. spring-boot启动后在浏览器打开指定页面

    来自:https://stackoverflow.com/questions/27378292/launch-browser-automatically-after-spring-boot-webap ...

  8. 游戏开发者注意!这个音频SDK可以完美兼容所有主流游戏引擎

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯游戏云 发表于云+社区专栏 在网络游戏中,无论是大逃杀.棋牌类.电子竞技类还是娱乐休闲类小游戏,玩家和玩家之间的互动.语音聊天是一 ...

  9. KVC、KVO实现过程

    1.KVC的实现过程 以 [object setValue:@"134567" forKey:@"uid"];为例子,来探究KVC的实现过程 第一步:搜索1.首 ...

  10. 深入理解JavaScript系列(39):设计模式之适配器模式

    介绍 适配器模式(Adapter)是将一个类(对象)的接口(方法或属性)转化成客户希望的另外一个接口(方法或属性),适配器模式使得原本由于接口不兼容而不能一起工作的那些类(对象)可以一些工作.速成包装 ...