C++代码

#include <iostream>
#include <deque>
#include <stack>
#include <vector>
using namespace std; const int MAXN=100;
const int INF=0x7FFFFFFF; struct edge
{
    int to,weight;
}; vector<edge> adjmap[MAXN];//邻接表
bool in_queue[MAXN];//顶点是否在队列中
int in_sum[MAXN];//顶点入队次数
int dist[MAXN];//源点到各点的最短路径
int path[MAXN];//存储到达i的前一个顶点
int nodesum;//顶点数
int edgesum;//边数 bool SPFA(int source)
{
    deque<int> dq;
    int i,j,x,to;
    for(i=1;i<=nodesum;i++)
    {
        in_sum[i]=0;
        in_queue[i]=false;
        dist[i]=INF;
        path[i]=-1;
    }
    dq.push_back(source);
    in_sum[source]++;
    dist[source]=0;
    in_queue[source]=true;
//初始化完成     while(!dq.empty())
    {
        x=dq.front();
        dq.pop_front();
        in_queue[x]=false;
        for(i=0;i<adjmap[x].size();i++)
        {
            to=adjmap[x][i].to;
            if((dist[x]<INF)&&(dist[to]>dist[x]+adjmap[x][i].weight))
            {
                dist[to]=dist[x]+adjmap[x][i].weight;
                path[to]=x;
                if(!in_queue[to])
                {
                    in_queue[to]=true;
                    in_sum[to]++;
                    if(in_sum[to]==nodesum) return false;
                    if(!dq.empty())
                    {
                        if(dist[to]>dist[dq.front()]) dq.push_back(to);
                        else dq.push_front(to);
                    }else dq.push_back(to);
                }
            }
        }
    }
    return true;
} void Print_Path(int x)
{
    stack<int> s;
    int w=x;
    while(path[w]!=-1)
    {
        s.push(w);
        w=path[w];
    }
    cout<<"顶点1到顶点"<<x<<"的最短路径长度为:"<<dist[x]<<endl;
    cout<<"所经过的路径为:1";
    while(!s.empty())
    {
        cout<<s.top()<<"";
        s.pop();
    }
    cout<<endl;
} int main()
{
    int i,s,e,w;
    edge temp;
    cout<<"输入顶点数和边数:";
    cin>>nodesum>>edgesum;
    for(i=1;i<=nodesum;i++)
    adjmap[i].clear();//清空邻接表
    for(i=1;i<=edgesum;i++)
    {
        cout<<"输入第"<<i<<"条边的起点、终点还有对应的权值:";
        cin>>s>>e>>w;
        temp.to=e;
        temp.weight=w;
        adjmap[s].push_back(temp);
    }
    if(SPFA(1))
    {
        for(i=2;i<=nodesum;i++) Print_Path(i);
    } else cout<<"图中存在负权回路"<<endl;
    return 0;
}

spfa最短路径的更多相关文章

  1. SPFA 最短路径打印方法

    #include <iostream> #include <cstdlib> #include <cstdio> #include <algorithm> ...

  2. poj 3259Wormholes (spfa最短路径)

    #include<stdio.h> #include<string.h> #include<limits.h> #include<queue> usin ...

  3. bzoj2662

    题解: spfa最短路径 dp[i][j]表示到i,用了j掌权 然后转移 代码: #include<bits/stdc++.h> using namespace std; ; int n, ...

  4. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  5. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  6. [最短路径SPFA] POJ 1847 Tram

    Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...

  7. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  8. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  9. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

随机推荐

  1. 有钱人都用iphone?

    身边的朋友用iphone, 大家都会调侃真有钱. 大数据显示, 人家是真的有钱. 看看来自腾讯移动分析数据 你玩过抖音就知道, 拍视频, 传视频的过的看着都挺滋润的. 反观用安卓的用户, 前20个应用 ...

  2. IFNULL和isnull用法

    语法 ISNULL ( check_expression , replacement_value ) 参数 check_expression: 将被检查是否为 NULL的表达式.check_expre ...

  3. 《图解HTTP》——返回结果的 HTTP 状态码

    状态码概述 状态码的职责是当客户端向服务器端发送请求时,描述返回的请求结果.借助状态码,用户可以知道服务器端是正常处理了请求,还是出现了错误. 状态码如 200 OK,以 3 位数字和原因短语组成.数 ...

  4. iOS 内购讲解

    一.总说内购的内容 1.协议.税务和银行业务 信息填写 2.内购商品的添加 3.添加沙盒测试账号 4.内购代码的具体实现 5.内购的注意事项 二.协议.税务和银行业务 信息填写 2.1.协议.税务和银 ...

  5. Mac NVM 配置

    1.NVM 简介 NVM(node version manager)是一个可以让你在同一台机器上安装和切换不同版本 node 的工具. GitHub 地址 2.NVM 环境配置 2.1 安装 NVM ...

  6. WPF宝典Url

    https://sourceforge.net/directory/os:windows/https://archive.codeplex.com/ https://code.msdn.microso ...

  7. Effective Java 第三版——82. 线程安全文档化

    Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...

  8. Azure CentOS挂载磁盘

    查看新增挂载磁盘 ls -l /dev/sd*  sudo fdisk /dev/sdc 依次输入:n,p,1,w  3.格式化分区 sudo mkfs -t ext4 /dev/sdc1  4 ...

  9. 用ajax下载字节流形式的excel文件

    原因:ajax请求只是个“字符型”的请求,即请求的内容是以文本类型存放的.文件的下载是以二进制形式进行的,ajax没法解析后台返回的文件流,所以无法处理二进制流response输出来下载文件. 解决方 ...

  10. Java编程的逻辑 (91) - Lambda表达式

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...