题意:

你试图把一些多米诺骨牌排成直线,然后推倒它们。但是如果你在放骨牌的时候不小心把刚放的骨牌碰倒了,它就会把相临的一串骨牌全都碰倒,

而你的工作也被部分的破坏了。

比如你已经把骨牌摆成了DD__DxDDD_D的形状,而想要在x这个位置再放一块骨牌。它可能会把左边的一块骨牌或右边的三块骨牌碰倒,而你将不得不重新摆放这些骨牌。

这种失误是无法避免的,但是你可以应用一种特殊的放骨牌方法来使骨牌更多的向一个方向倒下。

给出你要摆放的骨牌数目,以及放骨牌时它向左和向右倒的概率,计算你为完成任务摆放的骨牌数目的平均数。假设你使用了最佳的摆放策略。

输入将包含至多100个测试点,每个测试点占一行,包含需要摆放的骨牌数目n (1≤n≤1000),以及两个非负实数Pl, Pr,表示骨牌向左和向右倒的概率。保证1<Pl+Pr≤0.5。

解析:

  假设我们正在放第i个  i的左右两边都已经放好了 那么 有三种情况  左倒   右倒  不倒

  设放左边的期望次数为El  放右边的期望次数为Er

  那么E就等于相应 情况乘概率然后相加

  如果不倒 Ei = El + Er + 1;

  如果 左倒 那么我们就要重新放一遍左边 那么次数增加El + 1 次?  仔细想一下 当然不是。。因为如果这次再放的时候又倒了那  所以是Ei - Er

  同理 如果右倒 则是 Ei - El

  所以 Ei = El + Er + 1 + (Ei - Er)* pl + (Ei - El)* pr;

  移项得

Ei = min(Ei, (1 - p1) / (1 - p1 - p2) * El + (1 - p2) / (1 - p1 - p2) * Er + 1 / (1 - p1 - p2);
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, tot;
double dp[maxn]; int main()
{
int n;
double p1, p2;
while(cin >> n >> p1 >> p2)
{
for(int i=; i<=n; i++)
{
dp[i] = INF;
for(int j=; j<i; j++)
dp[i] = min(dp[i], ( - p1) / (double) ( - p1 - p2) * dp[j] + ( - p2) / (double) ( - p1 - p2) * dp[i - j - ]);
dp[i] += / (double)( - p1 - p2);
}
printf("%.2f\n", dp[n]); } return ;
}

Dumb Bones UVA - 10529(概率dp)的更多相关文章

  1. Dumb Bones UVA - 10529[多米诺重构]

    Dumb Bones UVA - 10529   来自绿书p176  题意 你试图把一些多米诺骨牌排成直线,然后推倒它们.但是如果你在放骨牌的时候不小心把刚放的骨牌碰倒了,它就会把相临的一串骨牌全都碰 ...

  2. UVA 11427 (概率DP+期望)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局, ...

  3. uva 12723 概率dp

    Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge isco ...

  4. UVA 10529 - Dumb Bones(概率+区间dp)

    UVA 10529 - Dumb Bones option=com_onlinejudge&Itemid=8&category=518&page=show_problem&am ...

  5. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  6. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  7. UVA 10900 So you want to be a 2n-aire? (概率dp)

    题意:玩家初始的金额为1:给出n,表示有n道题目:t表示说答对一道题目的概率在t到1之间均匀分布. 每次面对一道题,可以选择结束游戏,获得当前奖金:或者回答下一道问题,答对的话奖金翻倍,答错的话结束游 ...

  8. Substring UVA - 11468 AC自动机+概率DP

    题意: 给出一些字符和各自对应的选择概率,随机选择L次后得到一个长度为L的随机字符串S. 给出K个模板串,计算S不包含任何一个模板串的概率 dp[i][j]表示走到AC自动机 i 这个节点 还需要走 ...

  9. 【概率DP入门】

    http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html 有关概率和期望问题的研究 摘要 在各类信息学竞赛中(尤其是ACM竞赛中) ...

随机推荐

  1. Multiple Threads reading from the same file(转载)

    问 I have a xml file that needs to be read from many many times. I am trying to use the Parallel.ForE ...

  2. 全自动数据表格JQuery版

    由于最近工作上有些变动,已经快一个月没有写博客了.上一篇博客[React]全自动数据表格组件——BodeGrid介绍了全自动数据表格的设计思路以及分享了一个react.js的实现.但是现实情况中为了节 ...

  3. Flutter - 创建自适应的Android app 图标

    上一篇文章说到  Flutter - 自动生成Android & iOS图标 通过flutter_launcher_icons 可以一键生成所有的Icon 到此基本什么问题也没有,如果你用io ...

  4. 过渡与动画 - 缓动效果&基于贝塞尔曲线的调速函数

    难题 给过渡和动画加上缓动效果是一种常见的手法(比如具有回弹效果的过渡过程)是一种流行的表现手法,可以让界面显得更加生动和真实:在现实世界中,物体A点到B点往往也是不完全匀速的 以纯技术的角度来看,回 ...

  5. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...

  6. jsonrpc环境搭建和简单实例

    一.环境准备 下载需要的jar包和js文件,下载地址:https://yunpan.cn/cxvbm9DhK9tDq  访问密码 6a50 二.新建一个web工程,jsonrpc-1.0.jar复制到 ...

  7. Python-复习-文件操作-21

    # 文件处理 # 打开文件 #open('路径','打开方式','指定编码方式') # 打开方式 r w a r+ w+ a+ b #r+ 打开文件直接写 和读完再写 # 编码方式 —— utf-8 ...

  8. Linux内核及分析 第二周 操作系统是如何工作的?

    计算机是如何工作的? 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算机来说并不那么重要,但有了高级语言及函 ...

  9. Liinux 学习心得

    Linux 内核学习心得 姬梦馨 原创作品 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 反汇编一个简 ...

  10. 20135337——linux实践三:ELF文件格式分析(32位系统)

    ELF文件格式分析 可重定位文件 十六进制形式显示内容 显示各个段.符号表相关信息 查看各个段信息 elf文件头信息 段表 符号表信息 查看堆栈 具体分析 1.ELF文件头信息(小字节优先,均十六进制 ...