TensorFlow 高级接口使用简介(estimator, keras, data, experiment)

TensorFlow 1.4正式添加了kerasdata作为其核心代码(从contrib中毕业),加上之前的estimator API,现在已经可以利用Tensorflow像keras一样方便的搭建网络进行训练。data可以方便从多种来源的数据输入到搭建的网络中(利用tf.features可以方便的对结构化的数据进行读取和处理,比如存在csv中的数据,具体操作可以参考这篇文档);keras在搭建网络的时候,可以很大程度上避免由于Session和Graph的重用出现的一系列问题(不过现在tf.keras与原版的keras还是有不少区别的地方,因此使用的时候也是会遇上一些意外的问题);而estimator提供了类似与sklearn中模型训练的语法,非常好上手,而且默认定义了多种常用的任务,在自定义model_fn的时候也能让人对训练过程更加清晰,而且estimator提供了export_savedmodel函数很方便将训练好的ckpt模型文件转成pb文件并结合 dockertensorflow serving 进行灵活稳定的模型部署和更新。

1. tf.data 进行数据流操作(TFRecords)

keras中有keras.preprocessing.image.ImageDataGenerator()类和.flow_from_directory()函数可以很容易将保存在 文件夹 下面的数据进行读取;也可以用.flow()函数将数据直接从np.array中读取后输入网络进行训练(具体可以查看官方文档)。在使用图片并以文件夹名作为分类名的训练任务时这个方案是十分简单有效的,但是Tensorflow官方推荐的数据保存格式是 TFRecords,而keras官方不支持直接从tfrecords文件中读取数据(tf.keras也不行,但是这个issue中提供了一些PR是可以的,keras作者不太推荐就是了),所以这里就可以用data类来处理从TFRecords中的数据(也可以用之前常用的tf.train.batch()tf.train.shuffle_batch()来处理训练数据)。

Tensorflow官方提供了详细的文档来介绍data的机制和使用方法(看这里),而对于TFRecords类型数据,主要利用 tf.data.Iterator()来抽取数据,这里简单说下从TFRecords中提取数据的方法:

以下代码为官方代码

def dataset_input_fn():
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames) # 制定提取数据的tfrecords文件 # Use `tf.parse_single_example()` to extract data from a `tf.Example`
# protocol buffer, and perform any additional per-record preprocessing.
def parser(record): # 对tfrecords中的数据进行解析的操作
keys_to_features = {
"image_data": tf.FixedLenFeature((), tf.string, default_value=""),
"date_time": tf.FixedLenFeature((), tf.int64, default_value=""),
"label": tf.FixedLenFeature((), tf.int64,
default_value=tf.zeros([], dtype=tf.int64)),
}
parsed = tf.parse_single_example(record, keys_to_features) # Perform additional preprocessing on the parsed data.
image = tf.image.decode_jpeg(parsed["image_data"])
image = tf.reshape(image, [299, 299, 1])
label = tf.cast(parsed["label"], tf.int32) return {"image_data": image, "date_time": parsed["date_time"]}, label # Use `Dataset.map()` to build a pair of a feature dictionary and a label
# tensor for each example.
dataset = dataset.map(parser) # 一般就用map函数对输入图像进行预处理,而预处理函数可以包含在上面用于解析的parser函数
dataset = dataset.shuffle(buffer_size=10000) # 在训练的时候一般需要将输入数据进行顺序打乱提高训练的泛化性
dataset = dataset.batch(32) # 单次读取的batch大小
dataset = dataset.repeat(num_epochs) # 数据集的重复使用次数,为空的话则无线循环
iterator = dataset.make_one_shot_iterator() # `features` is a dictionary in which each value is a batch of values for
# that feature; `labels` is a batch of labels.
features, labels = iterator.get_next()
return features, labels
# return {"input": features, labels} # 对于estimator的输入前者为dict类型,后者为tensor

注: dataset.make_one_shot_iterator()是最简单的Iterator类,不需要明确的initialization,并且目前这是唯一能够在estimator中容易使用的iterator。对于需要重新使用的Dataset类(比如结构相同的训练和测试数据集),一般是需要用 reinitializable iterator ,不过在estimator中由于上述问题,现在一般的做法是对训练集和验证集单独写两个pipeline用make_one_shot_iterator来处理数据流。

参考

2. Dataset + Keras

通过data处理TFRecords数据流,我们就可以使用keras来进行训练了。

def architecture(input_shape=(_PATCH_SIZE, _PATCH_SIZE, 3)):
"""
Model architecture
Args:
input_shape: input image shape (not include batch) Returns: an keras model instance
"""
base_model = Xception(include_top=True,
weights=None, # no pre-trained weights used
pooling="max",
input_shape=input_shape, # modify first layer
classes=_NUM_CLASSES)
base_model.summary()
return base_model def train(source_dir, model_save_path):
"""
Train patch based model
Args:
source_dir: a directory where training tfrecords file stored. All TF records start with train will be used!
model_save_path: weights save path
"""
if tf.gfile.Exists(source_dir):
train_data_paths = tf.gfile.Glob(source_dir+"/train*tfrecord")
val_data_paths = tf.gfile.Glob(source_dir+"/val*tfrecord")
if not len(train_data_paths):
raise Exception("[Train Error]: unable to find train*.tfrecord file")
if not len(val_data_paths):
raise Exception("[Eval Error]: unable to find val*.tfrecord file")
else:
raise Exception("[Train Error]: unable to find input directory!")
(images, labels) = dataset_input_fn(train_data_paths)
model_input = keras.Input(tensor=images, shape=(_PATCH_SIZE, _PATCH_SIZE, 3), dtype=tf.float32, name="input") # keras model的输入需要为keras.Input类型,但是直接使用tensorflow tensor类型也是可以的
base_model = architecture()
model_output = base_model(model_input)
model = keras.models.Model(inputs=model_input, outputs=model_output)
optimizer = keras.optimizers.RMSprop(lr=2e-3, decay=0.9)
model.compile(optimizer=optimizer,
loss=focal_loss,
metrics=['accuracy'],
target_tensors=[labels]) # 1
tensorboard = tf.keras.callbacks.TensorBoard(log_dir=model_save_path)
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath=model_save_path+"/saved_model.h5")
model.fit(steps_per_epoch=8000, epochs=_EPOCHS, callbacks=[tensorboard, model_checkpoint]) def evaluate(source_dir, weights_path):
"""
Eval patch based model
Args:
source_dir: directory where val tf records file stored. All TF records start with val will be used!
weights_path: model weights save path
"""
# load model
base_model = architecture()
base_model.load_weights(weights_path)
# load test dataset
if tf.gfile.Exists(source_dir):
val_data_paths = tf.gfile.Glob(source_dir+"/val*.tfrecord")
if not len(val_data_paths):
raise Exception("[Eval Error]: unable to find val*.tfrecord file")
else:
raise Exception("[Train Error]: unable to find input directory!")
(images, labels) = input_fn(source_dir)
probs = base_model(images)
predictions = tf.argmax(probs, axis=-1)
accuracy_score = tf.reduce_mean(tf.equal(probs, predictions))
print("Accuracy of testing images: {}".format(accuracy_score))

注: 对于#1来说,根据keras model的compile函数的文档:

target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the target_tensors argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors.

定义了target tensor 之后就不需要再从外部输入数据了(fit的时候)。

而使用这种方式训练得到的的模型文件为h5,如果想要转换成用于tensorflow service的模型,需要用以下方式进行:a). fchollet提供的keras式写法

# @1
from keras import backend as K K.set_learning_phase(0) # all new operations will be in test mode from now on # serialize the model and get its weights, for quick re-building
config = previous_model.get_config()
weights = previous_model.get_weights() # re-build a model where the learning phase is now hard-coded to 0
from keras.models import model_from_config
new_model = model_from_config(config)
new_model.set_weights(weights)
# @2
from tensorflow_serving.session_bundle import exporter export_path = ... # where to save the exported graph
export_version = ... # version number (integer) saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input,
scores_tensor=model.output) # 分类
model_exporter.init(sess.graph.as_graph_def(),
default_graph_signature=signature)
model_exporter.export(export_path, tf.constant(export_version), sess)

或者tensorflow官方的写法:

import os
import tensorflow as tf
import keras.backend as K def save_model_for_production(model, version, path='prod_models'):
K.set_learning_phase(0)
if not os.path.exists(path):
os.mkdir(path)
export_path = os.path.join(
tf.compat.as_bytes(path),
tf.compat.as_bytes(str(get_new_version(path=path, current_version=int(version)))))
builder = tf.saved_model.builder.SavedModelBuilder(export_path) model_input = tf.saved_model.utils.build_tensor_info(model.input)
model_output = tf.saved_model.utils.build_tensor_info(model.output) prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': model_input},
outputs={'output': model_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) with K.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':
prediction_signature,
}) builder.save()

参考

3. Dataset + estimator

可以用tf.layers函数来代替keras搭建网络,而且可以提供更丰富的layer。

def xception():
def tf_xception(features, classes=2, is_training=True):
"""
The Xception architecture written in tf.layers
Args:
features: input image tensor
classes: number of classes to classify images into
is_training: is training stage or not Returns:
2-D logits prediction output after pooling and activation
"""
x = tf.layers.conv2d(features, 32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block1_conv1_bn')
x = tf.nn.relu(x, name='block1_conv1_act')
x = tf.layers.conv2d(x, 64, (3, 3), use_bias=False, name='block1_conv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block1_conv2_bn')
x = tf.nn.relu(x, name='block1_conv2_act') residual = tf.layers.conv2d(x, 128, (1, 1), strides=(2, 2), padding='same', use_bias=False)
residual = tf.layers.batch_normalization(residual, training=is_training) x = tf.layers.separable_conv2d(x, 128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block2_sepconv1_bn')
x = tf.nn.relu(x, name='block2_sepconv2_act')
x = tf.layers.separable_conv2d(x, 128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block2_sepconv2_bn') x = tf.layers.max_pooling2d(x, (3, 3), strides=(2, 2), padding='same', name='block2_pool')
x = tf.add(x, residual, name='block2_add') residual = tf.layers.conv2d(x, 256, (1, 1), strides=(2, 2), padding='same', use_bias=False)
residual = tf.layers.batch_normalization(residual, training=is_training) x = tf.nn.relu(x, name='block3_sepconv1_act')
x = tf.layers.separable_conv2d(x, 256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block3_sepconv1_bn')
x = tf.nn.relu(x, name='block3_sepconv2_act')
x = tf.layers.separable_conv2d(x, 256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block3_sepconv2_bn') x = tf.layers.max_pooling2d(x, (3, 3), strides=(2, 2), padding='same', name='block3_pool')
x = tf.add(x, residual, name="block3_add") residual = tf.layers.conv2d(x, 728, (1, 1), strides=(2, 2), padding='same', use_bias=False)
residual = tf.layers.batch_normalization(residual, training=is_training) x = tf.nn.relu(x, name='block4_sepconv1_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block4_sepconv1_bn')
x = tf.nn.relu(x, name='block4_sepconv2_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block4_sepconv2_bn') x = tf.layers.max_pooling2d(x, (3, 3), strides=(2, 2), padding='same', name='block4_pool')
x = tf.add(x, residual, name="block4_add") for i in range(8):
residual = x
prefix = 'block' + str(i + 5) x = tf.nn.relu(x, name=prefix + '_sepconv1_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name=prefix + '_sepconv1_bn')
x = tf.nn.relu(x, name=prefix + '_sepconv2_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name=prefix + '_sepconv2_bn')
x = tf.nn.relu(x, name=prefix + '_sepconv3_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')
x = tf.layers.batch_normalization(x, training=is_training, name=prefix + '_sepconv3_bn') x = tf.add(x, residual, name=prefix+"_add") residual = tf.layers.conv2d(x, 1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)
residual = tf.layers.batch_normalization(residual, training=is_training) x = tf.nn.relu(x, name='block13_sepconv1_act')
x = tf.layers.separable_conv2d(x, 728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block13_sepconv1_bn')
x = tf.nn.relu(x, name='block13_sepconv2_act')
x = tf.layers.separable_conv2d(x, 1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block13_sepconv2_bn') x = tf.layers.max_pooling2d(x, (3, 3), strides=(2, 2), padding='same', name='block13_pool')
x = tf.add(x, residual, name="block13_add") x = tf.layers.separable_conv2d(x, 1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')
x = tf.layers.batch_normalization(x, training=is_training, name='block14_sepconv1_bn')
x = tf.nn.relu(x, name='block14_sepconv1_act') x = tf.layers.separable_conv2d(x, 2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')
x = tf.layers.batch_normalization(x, training=is_training, name='block14_sepconv2_bn')
x = tf.nn.relu(x, name='block14_sepconv2_act')
# replace conv layer with fc
x = tf.layers.average_pooling2d(x, (3, 3), (2, 2), name="global_average_pooling")
x = tf.layers.conv2d(x, 2048, [1, 1], activation=None, name="block15_conv1")
x = tf.layers.conv2d(x, classes, [1, 1], activation=None, name="block15_conv2")
x = tf.squeeze(x, axis=[1, 2], name="logits")
return x def model_fn(features, labels, mode, params):
"""
Model_fn for estimator model
Args:
features (Tensor): Input features to the model.
labels (Tensor): Labels tensor for training and evaluation.
mode (ModeKeys): Specifies if training, evaluation or prediction.
params (HParams): hyper-parameters for estimator model
Returns:
(EstimatorSpec): Model to be run by Estimator.
"""
# check if training stage
if mode == tf.estimator.ModeKeys.TRAIN:
is_training = True
else:
is_training = False
# is_training = False # 1
input_tensor = features["input"]
logits = xception(input_tensor, classes=_NUM_CLASSES, is_training=is_training)
probs = tf.nn.softmax(logits, name="output_score")
predictions = tf.argmax(probs, axis=-1, name="output_label")
onehot_labels = tf.one_hot(tf.cast(labels, tf.int32), _NUM_CLASSES)
# provide a tf.estimator spec for PREDICT
predictions_dict = {"score": probs,
"label": predictions}
if mode == tf.estimator.ModeKeys.PREDICT:
predictions_output = tf.estimator.export.PredictOutput(predictions_dict)
return tf.estimator.EstimatorSpec(mode=mode,
predictions=predictions_dict,
export_outputs={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predictions_output
})
# calculate loss
# loss = focal_loss(onehot_labels, logits, gamma=1.5)
gamma = 1.5
weights = tf.reduce_sum(tf.multiply(onehot_labels, tf.pow(1. - probs, gamma)), axis=-1)
loss = tf.losses.softmax_cross_entropy(onehot_labels, logits, weights=weights)
accuracy = tf.metrics.accuracy(labels=labels,
predictions=predictions)
if mode == tf.estimator.ModeKeys.TRAIN:
lr = params.learning_rate
# train optimizer
optimizer = tf.train.RMSPropOptimizer(learning_rate=lr, decay=0.9)
update_ops = tf.get_collections(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
tensors_to_log = {'batch_accuracy': accuracy[1],
'logits': logits,
'label': labels}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=1000)
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
train_op=train_op,
training_hooks=[logging_hook])
else:
eval_metric_ops = {"accuracy": accuracy}
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
eval_metric_ops=eval_metric_ops) def get_estimator_model(config=None, params=None):
"""
Get estimator model by definition of model_fn
"""
est_model = tf.estimator.Estimator(model_fn=model_fn,
config=config,
params=params)
return est_model def train(source_dir, model_save_path):
"""
Train patch based model
Args:
source_dir: a directory where training tfrecords file stored. All TF records start with train will be used!
model_save_path: weights save path
"""
if tf.gfile.Exists(source_dir):
train_data_paths = tf.gfile.Glob(source_dir+"/train*tfrecord")
val_data_paths = tf.gfile.Glob(source_dir+"/val*tfrecord")
if not len(train_data_paths):
raise Exception("[Train Error]: unable to find train*.tfrecord file")
if not len(val_data_paths):
raise Exception("[Eval Error]: unable to find val*.tfrecord file")
else:
raise Exception("[Train Error]: unable to find input directory!")
train_config = tf.estimator.RunConfig()
new_config = train_config.replace(model_dir=model_save_path,
save_checkpoints_steps=1000,
keep_checkpoint_max=5)
params = tf.contrib.training.HParams(
learning_rate=0.001,
train_steps=5000,
min_eval_frequency=1000
)
est_model = get_estimator_model(config=new_config,
params=params)
# define training config
train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(data_path=train_data_paths,
batch_size=_BATCH_SIZE,
is_training=True),
max_steps=_MAX_STEPS) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(data_path=val_data_paths,
batch_size=_BATCH_SIZE),
steps=100,
throttle_secs=900)
# train and evaluate model
tf.estimator.train_and_evaluate(estimator=est_model,
train_spec=train_spec,
eval_spec=eval_spec) def evaluate(source_dir, model_save_path):
"""
Eval patch based model
Args:
source_dir: directory where val tf records file stored. All TF records start with val will be used!
model_save_path: model save path
"""
# load model
run_config = tf.contrib.learn.RunConfig(model_dir=model_save_path)
est_model = get_estimator_model(run_config)
# load test dataset
if tf.gfile.Exists(source_dir):
val_data_paths = tf.gfile.Glob(source_dir+"/val*.tfrecord")
if not len(val_data_paths):
raise Exception("[Eval Error]: unable to find val*.tfrecord file")
else:
raise Exception("[Train Error]: unable to find input directory!")
accuracy_score = est_model.evaluate(input_fn=lambda: input_fn(val_data_paths,
batch_size=_BATCH_SIZE,
is_training=False))
print("Accuracy of testing images: {}".format(accuracy_score))

注:

  • BN layer in estimator: : 对于问题#1,在包含BN层的网络,正常情况下都是需要明确指定是否处于training状态(BN在训练和其他状态的计算方式是不同的),但是在 1.4.1 版本下,使用estimator进行训练的时候是正常(is_training=True),但是在evaluation的时候(is_training=False)输出的精度是初始化状态,并且随着train_and_evaluate()的多次调用,eval loss会变得很大。这应该是一个bug(具体问题可查看issue13895), 16455。而参考tensorflow官方给出的给予estimator的resnet example中的BN layer在train stage的时候并没有设置is_training=True,所以这里把is_training关闭了,这样操作训练是正常的。 这个错误是由于Tensorflow tf.layers.batch_normalization()函数调用方式不对导致的,根据这个函数的[官方文档](https://www.tensorflow.org/api_docs/python/tf/layers/batch_normalization):

Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be added as a dependency to the train_op.

需要明确手动添加update_ops作为dependency到update_ops:

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)

此外,输入的图片的channel需要为3

  • TensorHook for logging: 在使用 tensorhook 打印训练日志的时候需要明确指tf.logging的verbosity level: tf.logging.set_verbosity(tf.logging.INFO)
  • estimator自定义model_fn的时候需要根据model_fn的使用状态返回不同的EstimatorSpec,model_fn的定义需要符合以下格式,具体可以查看官方文档
def model_fn(features, labels, mode, params):
# Logic to do the following:
# 1. Configure the model via TensorFlow operations
# 2. Define the loss function for training/evaluation
# 3. Define the training operation/optimizer
# 4. Generate predictions
# 5. Return predictions/loss/train_op/eval_metric_ops in EstimatorSpec object
return EstimatorSpec(mode, predictions, loss, train_op, eval_metric_ops)

model_fn有三种mode:tf.estimator.ModeKeys.TRAINtf.estimator.ModeKeys.EVALtf.estimator.ModeKeys.PREDICT,其中第一个必须要返回的为losstraining_op, 第二个是loss,第三个是prediction

  • tf.metrics.accuracy: 一般情况下EVAL的时候model_fn会返回eval_metric_ops,这个是一个dict,其值为tf.metrics的返回值(以tf.metrics.accuracy()为例,返回值如下):

accuracy: A Tensor representing the accuracy, the value of total divided by count.

update_op: An operation that increments the total and count variables appropriately and whose value matches accuracy.

但是这个函数在estimator模型中使用的时候有点反直觉:

tf.metrics.accuracy is not meant to compute the accuracy of a single batch. It returns both the accuracy and an update_op, and update_op is intended to be run every batch, which updates the accuracy.

所以在上面代码中对每个batch算accuracy的时候算的是update_op而非accuracy,更多关于tf.metrics.accuracy()的讨论可以看这俩个issue:15115, 9498

Export saved model

Freeze model/export savedmodel for Tensorflow Serving

使用estimator进行训练的一大好处就是进行分布式部署的扩展很容易,而部署需要的模型结构为(具体看这里):



从训练的ckpt模型文件freeze从pb(protobuf)模型文件,estimator提供了export_savedmodel来帮助快速进行操作。

def serving_input_receiver_fn():
"""
Build serving inputs
"""
inputs = tf.placeholder(dtype=tf.string, name="input_image")
feature_config = {'image/encoded': tf.FixedLenFeature(shape=[], dtype=tf.string)}
tf_example = tf.parse_example(inputs, feature_config)
patch_images = tf.map_fn(_preprocess_image, tf_example["image/encoded"], dtype=tf.float32)
patch_images = tf.squeeze(patch_images, axis=[0])
receive_tensors = {'example': inputs}
features = {"input": patch_images}
return tf.estimator.export.ServingInputReceiver(features, receive_tensors) def save_serving_model():
session_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
config = tf.estimator.RunConfig(model_dir=MODEL_WEIGHTS_PATH, session_config=session_config) # session_config is used for configuration of session
model = get_estimator_model(config=config)
model.export_savedmodel(export_dir_base=SERVING_MODEL_SAVE_PATH, serving_input_receiver_fn=serving_input_receiver_fn)

如果需要在预测的时候调整sess的参数(ConfigProto),可以通过tf.estimator.RunConfig配置session_config的参数然后再输入到tf.estimator.Estimator()的config参数(如上面所示)。

predict

一般通过export_savedmodel方式输出的模型是用tensorflow serving封装服务进行预测:

# start tensorflow serving
$ bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000 --model_name=your_model_name --model_base_path=/your/model/base/path
server = "localhost:9000"

def serving_predict(face_img):
"""
Get prediction based on given face image
Args:
face_img: input image file
Returns:
anti-spoof detection result of given face
"""
host, port = server.split(":")
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# creating request
request = predict_pb2.PredictRequest()
request.model_spec.name = "face_anti_spoof"
request.model_spec.signature_name = "predict_images"
# parse face img for serving
with open(face_img, "rb") as f:
serialized = f.read()
example = tf.train.Example(features=tf.train.Features(feature={"image/encoded": bytes_feature(serialized)}))
serialized = example.SerializeToString()
request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(serialized, shape=[1]))
# predict results
content = stub.Predict(request, timeout=5)
labels = content.outputs["label"].int64_val
prob = np.sum(labels) / len(labels)
if prob > 0.5:
label = LABELS[1]
else:
label = LABELS[0]
prob = 1 - prob
info = {"label": label, "prob": prob}
return info

具体关于tensorlfow serving的用法会在之后的文章里面展开。

而生成的pb文件也可以直接加载不通过tensorflow serving来进行预测,不过由于estimator的export_savedmodel输出的pb文件中模型的保存格式为tf.saved_model类,所以加载模型用tf.saved_model.loader模块进行操作会比较方便(sess.restore()加载这个pb模型很容易报错= =):

def load_graph(trained_model):
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
sess = tf.Session(config=session_config)
meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], trained_model)
# signature = meta_graph_def.signature_def
# signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
# print(signature[signature_key])
return sess
sess = load_graph(model_path) def predict_pb(image):
"""
Predict input face is real or not using model stored in save_model.pb generated by estimator export_savedmodel
Args:
image: input image file
"""
assert tf.gfile.Exists(image), "Input image file not found!"
with open(image, "rb") as f:
image_bytes = f.read()
example = tf.train.Example(features=tf.train.Features(feature={"image/encoded": bytes_feature(image_bytes)}))
serialized = example.SerializeToString()
input_tensor = sess.graph.get_tensor_by_name("input_image:0")
labels = sess.graph.get_tensor_by_name("output_label:0")
scores = sess.graph.get_tensor_by_name("output_score:0")
(labels, scores) = sess.run([labels, scores], feed_dict={input_tensor: [serialized]})
return labels, scores

参考

  1. estimator tutorial
  1. estimator example
  1. discussion
  1. tf.layers
  1. BN layer
  1. export & load saved model and predict
  1. estimator gpu options setting

4. keras + estimator + dataset

大部分与上面相同,只是用keras.estimator.model_to_estimator()函数直接将keras model直接转换成estimator model而不用自己定义model_fn,这种方式对于模型训练十分简单友好,但是在使用Tensorflow estimator的export_savedmodel()函数的时候会报错,原因是缺少export_outputs(在自定义model_fn的时候好像也并没有需要明确定义export_outputs变量,非常微妙的报错),而用官方的做法转化模型的时候又会报 BN层参数没有初始化 的错误(Attempting to use uninitialized value bn_xx)(又是BN层, 跟之前一样可能是由于graph重用引起的错误),因此用这种方式训练的模型暂时还没有找到转化成Tensorflow serving所需的模型的方法。

def model_fn(model_dir=".", input_shape=(_PATCH_SIZE, _PATCH_SIZE, 3)):
"""
Convert keras model to estimator model
Args:
model_dir: absolute model save directory
input_shape: input image shape (not include batch) Returns: an estimator model instance
"""
with K.name_scope("model"):
base_model = tf.keras.applications.Xception(include_top=True,
weights=None, # no pre-trained weights used
pooling="max",
input_shape=input_shape, # modify first layer
classes=_NUM_CLASSES)
base_model.summary()
model_input = keras.Input(shape=input_shape, dtype=tf.float32, name="input_1")
model_output = base_model(model_input)
model = keras.models.Model(inputs=model_input, outputs=model_output)
optimizer = keras.optimizers.RMSprop(lr=2e-3, decay=0.9)
model.compile(optimizer=optimizer,
loss=focal_loss,
metrics=['accuracy'])
if model_dir == ".":
model_dir = os.path.dirname(os.path.abspath(__file__))
elif not model_dir.startswith("/"): # relative path to abs path
model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), model_dir)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# define training config
run_config = tf.estimator.RunConfig(save_checkpoints_steps=2000,
keep_checkpoint_max=5)
# convert keras model to estimator model
est_model = keras.estimator.model_to_estimator(model, model_dir=model_dir, config=run_config)
return est_model

参考

5. estimator + experiment + datasets

在1.4中estimator model有train_and_evaluate()函数进行开始模型的train和evaluate,也可以直接用model.train()model.evaluate()函数(类似keras model的fit和evaluate函数);不过可以用tf.contrib.learn.Experiment()来代替(需要定义experiment类,比较麻烦)。大部分与estimator model相同,需要定义experiment_fn如下:

from tensorflow.contrib.learn import learn_runner

def experiment_fn(run_config, params):
"""
Create an experiment to train and evaluate the model
Args:
run_config: configuration for estimator
params: Hparams object returned by tf.contrib.training.HParams
Returns:
Experiment object
"""
if tf.gfile.Exists(FLAGS.train_data_dir) and tf.gfile.Exists(FLAGS.val_data_dir):
train_data_paths = tf.gfile.Glob(FLAGS.train_data_dir+"/train*tfrecord")
val_data_paths = tf.gfile.Glob(FLAGS.val_data_dir+"/val*tfrecord")
if not len(train_data_paths):
raise Exception("[Train Error]: unable to find train*.tfrecord file")
if not len(val_data_paths):
raise Exception("[Eval Error]: unable to find val*.tfrecord file")
else:
raise Exception("[Train Error]: unable to find input directory!")
estimator = get_estimator_model(config=run_config, params=params) def train_input_fn():
return input_fn(data_path=train_data_paths, batch_size=_BATCH_SIZE, is_training=True) def eval_input_fn():
return input_fn(data_path=val_data_paths, batch_size=_BATCH_SIZE, is_training=False) experiment = tf.contrib.learn.Experiment(
estimator=estimator,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=params.train_steps,
min_eval_frequency=params.min_eval_frequency,
)
return experiment def run_experiment():
"""
Run the training experiment
"""
params = tf.contrib.training.HParams(
learning_rate=0.002,
n_classes=_NUM_CLASSES,
train_steps=5000,
min_eval_frequency=100
)
run_config = tf.contrib.learn.RunConfig(model_dir=FLAGS.save_dir,
save_checkpoints_steps=1000,
keep_checkpoint_max=5)
experiment = experiment_fn(run_config=run_config, params=params)
experiment.train_and_evaluate()
# learn_runner.run(
# experiment_fn=experiment_fn, # first class function
# run_config=run_config,
# schedule='train_and_evaluate',
# hparams=params
# )

参考

Tensorflow1.4 高级接口使用(estimator, data, keras, layers)的更多相关文章

  1. Senparc.Weixin.MP SDK 微信公众平台开发教程(十一):高级接口说明

    这里所说的高级接口是指面向通过认证的服务号开通的高级功能. 高级功能大致可以分类为: 用户接口 分组接口 客服接口(有别于之前介绍的多客服) 群发接口 多媒体接口 二维码接口 模板消息接口(不是所有账 ...

  2. 微信公众平台自定义菜单及高级接口PHP SDK

    本文介绍介绍微信公众平台自定义菜单及高级接口的PHP SDK及使用方法. 作者 方倍工作室 修正记录: 2014.05.03 v1.0 方倍工作室 http://www.cnblogs.com/txw ...

  3. 微信公众平台自定义菜单及高级接口PHP SDK(转)

    本文介绍介绍微信公众平台自定义菜单及高级接口的PHP SDK及使用方法. 作者 方倍工作室 修正记录: 2014.05.03 v1.0 方倍工作室 http://www.cnblogs.com/txw ...

  4. C#微信公众号接口开发实例-高级接口-申请带参数的二维码

    最近公司涉及到微信绑定用户,做了高级接口-申请带参数的二维码,总结了下微信开发接口.微信接口开发都是除了消息用的xml 回复基本上都是用json的形式传递信息(post/get),开发的方法基本都是一 ...

  5. "解密"微信开放高级接口 企业如何应对

    今天(2013年10月29日)腾讯终于对外公开了微信公众平台最新的接口,一石激起千层浪,对于很多微信公众平台的运营人员来说,今天是令人兴奋的一天!微信在向申请服务号的企业开发了大量接口.用户不想输入文 ...

  6. [c#]asp.net开发微信公众平台(8)微信9大高级接口,自定义菜单

    前7篇把最基础的消息接收和回复全做完了,  也把高级接口的入口和分拆处理写好了空方法,  此篇接着介绍微信的9大高级接口, 并着重讲解其中的自定义菜单. 微信9大接口为: 1.语音识别接口 2.客服接 ...

  7. 自定义菜单和高级接口-获取Access Token

    自定义菜单和高级接口都需要使用APPID和AppSecret来创建. 对应暂时没有这些权限的微信公众账号,开发者可以申请测试账号来体验和测试体验微信公众平台的所有高级接口的功能.链接 https:// ...

  8. Unity3D学习笔记4——创建Mesh高级接口

    目录 1. 概述 2. 详论 3. 其他 4. 参考 1. 概述 在文章Unity3D学习笔记2--绘制一个带纹理的面中使用代码的方式创建了一个Mesh,不过这套接口在Unity中被称为简单接口.与其 ...

  9. Keras(七)Keras.layers各种层介绍

    一.网络层 keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(Recurrent).嵌入层( Embedding).高级 ...

随机推荐

  1. JS_高程1.javascript简介

    1.javaScript诞生于1995年,最开始是为了处理以前由服务器端语言负责的一些诸如验证的操作. 2.一些名词: ECMA:European Computer Manufacturers Ass ...

  2. CSS_选择符

    2016-10-28 <CSS入门经典>第五章 以下提示注意事项: 1.如何选择使用id选择符还是class选择符:当确信id选择符在页面的唯一性时,就可以使用id选择符. 2.通用选择符 ...

  3. python version 3.6 required,which was not fount in the registry(python3.6安装scrapy)

    在安装scrapy时遇到问题 环境:win10(64位), Python3.6(64位) 安装scrapy: 1.安装wheel(安装后,便支持通过wheel文件安装软件) pip3 install ...

  4. CentOS 7创建自定义KVM模板(现有KVM迁移到另外一台机)

    说明:创建KVM模板有个好处,不用每次都运行命令创建,并且可以为迁移做准备. 一.创建KVM模板 1.下载iso(省略) 2.创建磁盘 qemu-img create -f raw centos7.r ...

  5. PowerBI发布到网页

    如果网页当中需要嵌入PowerBI的报表,可以在PowerBI当中生成链接,然后网页或者博客当中插入这一段html代码. 以下是PowerBI生产网页链接的示例,并且在博客的最后也插入了PowerBI ...

  6. 外卖ERP管理系统(一)

    京门时代外卖ERP是北京京门时代科技有限公司旗下一款专业的外卖ERP系统管理软件. 本ERP目前己经对接了百度.饿了么.美团以等各外卖平台,在配送方面对接了闪送快递.人人快递.UU跑腿以及达达配送. ...

  7. 如何在MyBatis中优雅的使用枚举

    问题 在编码过程中,经常会遇到用某个数值来表示某种状态.类型或者阶段的情况,比如有这样一个枚举:   public enum ComputerState { OPEN(10), //开启 CLOSE( ...

  8. WordPress主题开发:按分类调用文章

    调用catid为2的分类下的文章,就是后台分类链接的tag_ID <?php $cat_query = new WP_Query(array( 'cat' => '2' )); ?> ...

  9. 在Centos7下安装nghttp2

    如果是Ubuntu18.04, 系统本身已经带了nghttp2了, 直接apt安装就可以. 下载源代码 https://github.com/nghttp2/nghttp2 如果是在Ubuntu下编译 ...

  10. 内核中的锁机制--RCU

    一. 引言 众所周知,为了保护共享数据,需要一些同步机制,如自旋锁(spinlock),读写锁(rwlock),它们使用起来非常简单,而且是一种很有效的同步机制,在UNIX系统和Linux系统中得到了 ...