题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5791

参考博客:https://blog.csdn.net/wuxuanyi27/article/details/52116674

Two

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2815    Accepted Submission(s): 1206

Problem Description
Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
 
Input
The input contains multiple test cases.

For each test case, the first line cantains two integers N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.

 
Output
For each test case, output the answer mod 1000000007.
 
Sample Input
3 2
1 2 3
2 1
3 2
1 2 3
1 2
 
Sample Output
2
3
题目大意:给你两个集合,长度分别为n和m,需要你求出他们相同的子序列个数。
解题思路:看起来有点像最长公共子序列,不过有点不一样。我们可以很容易确定状态,用dp[i][j]表示第一个序列的前i个元素和第二个序列的前j个元素相同子序列的个数。关键是推导出状态方程,如果第一序列第i个元素和第二个序列的第j个元素不相同的话,我们需要考虑两种情况,如果第一个序列没有第i个元素,他们相同的子序列个数加上如果第二个序列没有第j个元素,他们相同子序列的个数,同时再减去dp[i-1][j-1],,因为在之前将第一个序列前i-1和第二个序列前j-1计算了两边,就可以的得到:dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]。当第一个序列的第i个元素等于第二个序列的第j个元素的话,需要加上i与j相同的一个之外,还需要加上dp[i-1][j-1],因为dp[i-1][j-1]可以与i配对相同,也可以与j配对相同,于是就需要重复计算一次。
dp[i][j]=dp[i-1][j]+dp[i][j-1]+1。
 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MOD=1e9+;
const int maxn=;
ll dp[maxn][maxn];
int n,m;
int a[maxn],b[maxn]; int main()
{
while(cin>>n>>m)
{
memset(dp,,sizeof(dp));
for (int i=;i<=n;i++)
cin>>a[i];
for (int i=;i<=m;i++)
cin>>b[i];
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(a[i]==b[j]) dp[i][j]=(dp[i-][j]+dp[i][j-]+)%MOD;
else dp[i][j]=(dp[i-][j]+dp[i][j-]-dp[i-][j-])%MOD;
}
}
cout<<(dp[n][m]+MOD)%MOD<<endl;
}
}

hdu5791(DP)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  5. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  6. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  7. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  8. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  9. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. subprocess.Popen指令包含中文导致乱码问题解决

    其实解决起来非常简单,如果了解到Windows中文系统编码为GB2312的话 只需将你包含中文的指令字符串编码为GB2312即可 cmd = u'cd 我的文档' cmd.encode('gb2312 ...

  2. Quartz_配置

    quartz_jobs.xml job 任务 其实就是1.x版本中的<job-detail>,这个节点是用来定义每个具体的任务的,多个任务请创建多个job节点即可 name(必填) 任务名 ...

  3. 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式

    这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频  https://www.bilibili.com/video/av19849697?share_medium=android&a ...

  4. hdu 3038 给区间和,算出多少是错的

    参考博客 How Many Answers Are Wrong Problem Description TT and FF are ... friends. Uh... very very good ...

  5. B. Equations of Mathematical Magic

    思路 打表找规律,发现结果是,2的(a二进制位为1总数)次方 代码 #include<bits/stdc++.h> using namespace std; #define ll long ...

  6. 【2016.4.6】结对编程 终章 THE END

  7. 《Linux内核分析》第七周学习总结 可执行程序的装载

    第七周.可执行程序的装载 一.可执行程序是如何产生的? (1).c文件gcc汇编形成.s和.asm汇编代码: (2)汇编代码经过gas变成.o目标文件: (3)目标文件变成可执行文件: (4)可执行文 ...

  8. 【MOOC EXP】Linux内核分析实验六报告

    程涵  原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 进程的描述和进程的创建 知识点梳理: ...

  9. Mooc总结——Linux内核分析

    朱荟潼+ 原创作品转载请注明出处 :<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 学习笔记链接汇总 第 ...

  10. 使用Junit进行单元测试

    使用Junit进行单元测试 一.目的和要求 JUnit是一款由Erich Gamma(<设计模式>的作者)和Kent Beck(极限编程的提出者)编写的开源的回归测试框架,供Java编码人 ...