由于是一个二次函数的关系,所以易证应该尽量让两组的顺序相同

然后就离散化乱搞几发,最后就变成了求逆序对的数量了

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
using namespace std;
const int maxn=,mod=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
pa h1[maxn],h2[maxn];
int nh[maxn],rank[maxn];
int tr[maxn]; inline int lowbit(int x){return x&(-x);} inline void add(int x,int y){
for(;x<=N;x+=lowbit(x)) tr[x]=(tr[x]+y)%mod;
}
inline int query(int x){
int re=;for(;x;x-=lowbit(x)) re=(re+tr[x])%mod;return re;
} int main(){
int i,j,k;
N=rd();
for(i=;i<=N;i++) h1[i]=make_pair(rd(),i);
for(i=;i<=N;i++) h2[i]=make_pair(rd(),i);
sort(h1+,h1+N+);sort(h2+,h2+N+);
for(i=;i<=N;i++){
rank[i]=h1[i].second;
}for(i=;i<=N;i++){
nh[h2[i].second]=rank[i];
}int ans=;
for(i=N;i;i--){
ans=(ans+query(nh[i]))%mod;
add(nh[i],);
}printf("%d\n",ans);
return ;
}

luogu1966 火柴排队(离散化+树状数组)的更多相关文章

  1. NOIP 2013 洛谷P1966 火柴排队 (树状数组求逆序对)

    对于a[],b[]两个数组,我们应选取其中一个为基准,再运用树状数组求逆序对的方法就行了. 大佬博客:https://www.cnblogs.com/luckyblock/p/11482130.htm ...

  2. LOJ2609. NOIP2013 火柴排队 【树状数组】

    LOJ2609. NOIP2013 火柴排队 LINK 题目大意: 给你两个数列,定义权值∑i=1(ai−bi)^2 问最少的操作次数,最小化权值 首先需要发现几个性质 最小权值满足任意i,j不存在a ...

  3. 【题解】洛谷P1966 [NOIP2013TG] 火柴排队(树状数组+逆序对)

    次元传送门:洛谷P1966 思路 显然在两排中 每排第i小的分别对应就可取得最小值(对此不给予证明懒) 所以我们只在意两排的火柴是第几根 高度只需要用来进行排序(先把两个序列改成有序的方便离散化) 因 ...

  4. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  5. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  6. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  7. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  8. BZOJ_2141_排队_树状数组+分块

    BZOJ2141_排队_树状数组+分块 Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了 ...

  9. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

随机推荐

  1. Unity3d之树木创建的参数设定

    Unity3d之树木创建的参数设定 通常Unity3d创建树木经常会创建出很多奇葩的种类=_=,以下是创建出比较正常树木的基本参数 1:> 基本树干形状建立: 选择根建立分枝干设置分支干Di ...

  2. ABP+AdminLTE+Bootstrap Table权限管理系统第七节--登录逻辑及几种abp封装的Javascript函数库

    返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期         简介 经过前几节,我们已经解决数据库,模型,DTO,控制器和注入等问题.那么再来看一下登录逻辑.这 ...

  3. BugkuCTF web基础$_GET

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  4. zookeeper Error contacting service 解决

    连接kafka集群,有一个kafka机器连接失败 到该kafka机器上查询kafka进程,发现没有, 再查看zookeeper状态,提示 Error contacting service. It is ...

  5. Redis常用操作-------List(列表)

    1.BLPOP key [key ...] timeout BLPOP 是列表的阻塞式(blocking)弹出原语. 它是 LPOP 命令的阻塞版本,当给定列表内没有任何元素可供弹出的时候,连接将被  ...

  6. 领跑衫获奖感言 & 课程总结

    很荣幸在最后一次课获得了黄色领跑衫.在此,我要感谢教师杨贵福,感谢<构建之法>的作者邹欣老师和出版人周筠老师,感谢“耐撕”团队的队员们. 作为旁听生,最后一堂课,有些不舍.不多说,先上图, ...

  7. 《Linux内核设计与实现》读书笔记 3

    第三章 进程管理 3.1进程 概念: 进程:处于执行期的程序.但不仅局限于程序,还包含其他资源(打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内催音社的内存地址空间及一个或多个执行线 ...

  8. python语言几个常见函数的使用

    写代码,有如下变量,请按照要求实现每个功能: name = " Kobe Bean Bryant" a. 移除 name 变量对应的值左边的空格,并输出移除后的内容 name = ...

  9. 理解java的三大特性之继承

    学习来源:http://www.cnblogs.com/chenssy/p/3354884.html default 默认权限(包权限-同一个包可以访问) private 私有(类内部可以使用,继承的 ...

  10. 【转】进程同步之信号量机制(pv操作)及三个经典同步问题

    原文地址:http://blog.csdn.net/speedme/article/details/17597373 上篇博客中(进程同步之临界区域问题及Peterson算法),我们对临界区,临界资源 ...