利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构
相关知识:(来自百度百科)
LCA(Least Common Ancestors)
即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。
例如:
1和7的最近公共祖先为5;
1和5的最近公共祖先为5;
7和5的最近公共祖先为7;
题目:
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点2
和节点8
的最近公共祖先是6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点2
和节点4
的最近公共祖先是2
, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
常见解法:
1.暴力枚举(朴素算法)
遍历树,找到两个节点(A、B)的位置。
将深度较深的节点(A)向树的根部移动到和深度较浅的节点(B)同一深度。
然后两个点一起向上移动,直到重叠。
2.运用DFS序
3.倍增寻找(ST算法)
4.Tarjan算法(离线算法)
5.树链剖分
分析:
这里讨论一下Tarjan算法(因为只看懂了这个)
Tarjan算法其实是一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法。
如果把LCA看作一个图的话,就是求连接图中两个元素的最短路径。
而这个算法是基于并查集(两个元素是否同一上级)和DFS(深度优先搜索)
DFS的作用是深度遍历整个树,并查集的作用是将该点和其子节点连接成一个集合:如下图每种颜色代表一个集合
个人的理解:
① 如果在上图中找2和8的最近公共祖先,从根节点1开始深度遍历,会首先得到蓝色这个集合(2在集合中)。
② 但在遍历的过程中发现蓝色集合里面没有8,那么就说明8在其他颜色的集合里面。
③ 而蓝色集合与其他颜色集合连接点为1,不用考虑8在哪个集合中,就能够断定2和8的最近公共祖先是1。
Tarjan代码实现:
/**
* 对二叉树节点的定义
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/ class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root == NULL)//若根节点为空,返回NULL
return NULL;
if(root == p || root == q)//当q为p的父节点或p为q的父节点
return root; //这里通过递归实现LCA
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q); if(left != NULL && right != NULL)
return root;
else if(left != NULL)
return left;//移到节点的左孩子
else if(right != NULL)
return right;//移到节点的右孩子
else
return NULL; }
};
利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构的更多相关文章
- LeetCode 235. 二叉搜索树的最近公共祖先 32
235. 二叉搜索树的最近公共祖先 235. Lowest Common Ancestor of a Binary Search Tree 题目描述 给定一个二叉搜索树,找到该树中两个指定节点的最近公 ...
- Java实现 LeetCode 235 二叉搜索树的最近公共祖先
235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个 ...
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q ...
- LeetCode 235. 二叉搜索树的最近公共祖先
235. 二叉搜索树的最近公共祖先 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先 ...
- Leetcode:235. 二叉搜索树的最近公共祖先
Leetcode:235. 二叉搜索树的最近公共祖先 Leetcode:235. 二叉搜索树的最近公共祖先 Talk is cheap . Show me the code . /** * Defin ...
- [程序员代码面试指南]二叉树问题-在二叉树中找到两个节点的最近公共祖先、[LeetCode]235. 二叉搜索树的最近公共祖先(BST)(非递归)
题目 题解 法一: 按照递归的思维去想: 递归终止条件 递归 返回值 1 如果p.q都不在root为根节点的子树中,返回null 2 如果p.q其中之一在root为根节点的子树中,返回该节点 3 如果 ...
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 + 二叉排序树 + 最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 Offer_68_1 题目描述 方法一:迭代法 由于该题的二叉树属于排序二叉树,所以相对较简单. 只需要判断两个结点是否在根节点的左右子树中 ...
- [Swift]LeetCode235. 二叉搜索树的最近公共祖先 | Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LC]235题 二叉搜索树的最近公共祖先 (树)(递归)
①题目 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖先 ...
随机推荐
- [20170728]oracle保留字.txt
[20170728]oracle保留字.txt --//oracle有许多保留字,我印象最深的就是使用rman备份表空间test,test就是rman里面的保留字.--//还有rman也是rman里面 ...
- 17秋 软件工程 团队第五次作业 Alpha Scrum6
17秋 软件工程 团队第五次作业 Alpha Scrum6 今日完成的任务 世强:APP内通知消息发送; 港晨:APP前端登陆界面编写: 树民:Web后端数据库访问模块代码实现: 伟航:Web后端Re ...
- Skip-Gram模型
Stanford CS224n的课程资料关于word2vec的推荐阅读里包含Word2Vec Tutorial - The Skip-Gram Model 这篇文章.这里针对此文章作一个整理. wor ...
- Properties集合_练习
定义功能:获取一个应用程序 运行次数,如果超过5次,给出使用次数已到请注册的提示,并不要再运行程序 思路: 1.定义计数器:每次程序启动都需要计数一次,并且是在原有的次数上进行计数. 2.计数器就 ...
- OPENSTACK在RHEL7安装;admin创建虚拟机模板供demo使用
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u010026901/article/details/30965601 首先RHEL7安装.导入镜像, ...
- Click to add to Favorites Troubleshooting: High Version Count Issues (Doc ID 296377.1)
Copyright (c) 2018, Oracle. All rights reserved. Oracle Confidential. Click to add to Favorites Trou ...
- oracle 索引的几种方式
一.查询索引的高度 select index_name,blevel,leaf_blocks,num_rows,distinct_keys,clustering_factorfrom user_ind ...
- python编程入门之简介
引用百度百科: Python是一种面向对象.直译式计算机程序设计语言,由荷兰人Guido van Rossum发明于1989年,1991年发行第一个公开发行版.它常被昵称为胶水语言,它能够很轻松的把用 ...
- Qt warning: 构建目录必须和源文件目录为同级目录
从一台电脑转移项目到另一电脑, 路径发生变化,重新构建运行时会出现“QT 构建目录必须和源目录为同级目录”提示,解决办法很加单.如下: 方法一: 点击 project(项目)->然后,看看Bui ...
- WebSocket原理与实践(一)---基本原理
WebSocket原理与实践(一)---基本原理 一:为什么要使用WebSocket?1. 了解现有的HTTP的架构模式:Http是客户端/服务器模式中请求-响应所用的协议,在这种模式中,客户端(一般 ...