Semantic Compositionality through Recursive Matrix-Vector Spaces-paper
Semantic Compositionality through Recursive Matrix-Vector Spaces
作者信息:
Richard Socher Brody Huval Christopher D. Manning Andrew Y. Ng
richard@socher.org, {brodyh,manning,ang}@stanford.edu
Computer Science Department, Stanford University
代码数据公开:
https://www.socher.org/index.php/Main/
MX-RNN模型:
We present a novel recursive neural network model for semantic compositionality. In our context,compositionality is the ability to learn compositional vector representations for various types of phrases and sentences of arbitrary length.
不需要任何hand-designed semantic resources比如WorNet,FrameNet
通过加入WordNet hypernyms, POS and NER tags性能更好
2 MV-RNN: A Recursive Matrix-Vector Model
之前多个词向量组合成一个短语或者句子是用的线性关系,但是只能捕捉‘sum’的关系,不能捕捉可以改变另外一个词的含义的词的功能,例如extremely strong
1)给每个词分配了一个向量和一个矩阵
2) learning an input-specific, nonlinear, compositional function for computing vector and matrix representations for multi-word sequences of any syntactic type
如果一个词缺少operator semantics,那么它的矩阵就是一个单位矩阵;然而,如果一个词主要是作为operator,比如extremely,那么它的向量会接近0,它的矩阵gain a clear operator meaning,正向和负向都会增大被修饰词的含义
2.2 Matrix-Vector Neural Word Representation
与训练词向量为50维,矩阵50*50维,初始化矩阵是单位矩阵+高斯噪声,所以每个句子表示为((单词向量1,单词矩阵1),。。。,(),())
2.2 composition models for two words
2010年的工作,用了表示句法关系的矩阵R,背景知识的矩阵K
我们的工作:u需要任何手工涉及的semantic resources比如背景知识K,也不需要explicit knownledge of relation R,使用输入independant的组合函数
W是n*2n,可以将输入的词统一到相同的维度,W可以捕捉compositional信息
得到的是p
2.3 Recursive Compositions of Multiple Words and Phrases
This section describes how we extend a word-pair matrix-vector-based compositional model to learn vectors and matrices for longer sequences of words
Wm
得到的是P
2.4 Objective Functions for Training
One of the advantages of RNN-based models is that each node of a tree has associated with it a distributed vector representation (the parent vector p) which can also be seen as features describing that
phrase.
softmax对节点p分类
2.5learning
2.6 Low-Rank Matrix Approximations
5 combination od semantic relationship
semantic relationships between pairs of nominals. For instance, in the sentence “My [apartment]e1 has a pretty large [kitchen]e2.”, we want to predict that the kitchen and apartment are in a component-whole relationship.
figure5分类名词关系:
1)先找到要分类的两个词
2)使用节点向量分类
数据是9个顺序关系(两个方向)*2+没有方向的一个 = 19类,比如因果,文本-主题
Semantic Compositionality through Recursive Matrix-Vector Spaces-paper的更多相关文章
- 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...
- 向量空间(Vector Spaces)
向量空间(Vector Spaces) 向量空间又称线性空间,是线性代数的中心内容和基本概念之一.在解析几何里引入向量的概念后,是许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域 ...
- 语义SLAM的数据关联和语义定位(二)Semantic Localization Via the Matrix Permanent
论文假设和单目标模型 这部分想讲一下Semantic Localization Via the Matrix Permanent这篇文章的一些假设. 待求解的问题可以描述为 假设从姿态\(x\)看到的 ...
- 【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces
Vector Space: R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 conta ...
- Deep Learning for NLP 文章列举
Deep Learning for NLP 文章列举 原文链接:http://www.xperseverance.net/blogs/2013/07/2124/ 大部分文章来自: http://w ...
- 转 Deep Learning for NLP 文章列举
原文链接:http://www.xperseverance.net/blogs/2013/07/2124/ 大部分文章来自: http://www.socher.org/ http://deepl ...
- tree-lstm初探
https://zhuanlan.zhihu.com/p/35252733 可以先看看上面知乎文章里面的例子 Socher 等人于2012和2013年分别提出了两种区分词或短语类型的模型,即SU-RN ...
- 【MT】牛津的MT教程
Preamble This repository contains the lecture slides and course description for the Deep Natural Lan ...
- Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos slides practicals all up. Thanks Andrew for the tip!
Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos/slides/pra ...
随机推荐
- Linux PWM framework简介和API描述【转】
本文转载自:https://blog.csdn.net/mike8825/article/details/51656400 1. 前言 PWM是Pulse Width Modulation(脉冲宽度调 ...
- 遗留系统如何用DDD重构(未完,待续)
GETTING DDD STARTED SURROUNDED BY LEGACY SYSTEMS ByEric Evans
- Static需谨慎
Static Cling Sticking Your Code To Things Unnecessarily Static Cling is a code smell used to describ ...
- ORM模型
一.创建及映射(orm_intro_demo文件) 在项目新建App下的models.py文件下新建ORM模型: from django.db import models #如果要将一个普通的类变成一 ...
- 【NET Core】.NET Core中读取json配置文件
在.NET Framework框架下应用配置内容一般都是写在Web.config或者App.config文件中,读取这两个配置文件只需要引用System.Configuration程序集,分别用 Sy ...
- DAY8 文件操作(二)
一.写 1.1写文件 # w:没有文件新建文件,有文件就清空文件 w = open('1.txt', 'w', encoding='utf-8') w.write('000\n') # 在写入大量数据 ...
- JS封装addClass、removeClass
addClass封装:1.先把原有的类名和需要添加的类名用“”切割.拼接. 2.查重,把所有类名遍历,重复的去掉. 3.“”拼接. function addClass(ele , cName) { v ...
- laravel 路由的配置
- 小程序 input 组件内容显示不全(显示的长度不满 input 宽度)问题
问题:小程序的input组件经常用到,但在使用input组件的时候会出现一种现象:明明设置了input的宽度,但是输入的内容显示的长度范围却怎么都不到一整个input组件的宽度,而且后面没显示的地方无 ...
- scrapy python2升级python3遇到的坑
换成Python3首先pycharm先执行: 然后看代码自己所需要的第三方库都要重新装 然后执行代码: 遇到这样的错如下: SyntaxError: invalid syntax 先检查print 所 ...