K临近算法
K临近算法原理
K临近算法(K-Nearest Neighbor, KNN)是最简单的监督学习分类算法之一。(有之一吗?)
对于一个应用样本点,K临近算法寻找距它最近的k个训练样本点即K个Nearest Neighbor。
若在K个邻居中属于某一类别的最多,则认为应用样本点也属于该类别。
KNN算法Python实现
KNN算法无需训练,很容易实现。
from numpy import *
import operator
class KNNClassifier():
def __init__(self):
self.dataSet = []
self.labels = []
def loadDataSet(self,filename):
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split()
dataLine = list()
for i in lineArr:
dataLine.append(float(i))
label = dataLine.pop() # pop the last column referring to label
self.dataSet.append(dataLine)
self.labels.append(int(label))
def setDataSet(self, dataSet, labels):
self.dataSet = dataSet
self.labels = labels
def classify(self, data, k):
self.dataSet = array(self.dataSet)
self.labels = array(self.labels)
self._normDataSet()
dataSetSize = self.dataSet.shape[0]
# get distance
diffMat = tile(data, (dataSetSize,1)) - self.dataSet
sqDiffMat = diffMat**2
distances = sqDiffMat.sum(axis=1)
# get K nearest neighbors
sortedDistIndicies = distances.argsort()
classCount= {}
for i in range(k):
voteIlabel = self.labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# get fittest label
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def _normDataSet(self):
minVals = self.dataSet.min(0)
maxVals = self.dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(self.dataSet))
m = self.dataSet.shape[0]
normDataSet = self.dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
self.dataSet = normDataSet
def test(self):
self.dataSet = array([[1.0,1.1],[1.0,1.0],[0.9,0.9],[0,0],[0,0.1],[0,0.2]])
self.labels = [1,1,1,2,2,2]
print(self.classify([1.0,1.1], 2))
if __name__ == '__main__':
KNN = KNNClassifier()
KNN.loadDataSet('testData.txt')
print(KNN.classify([72011, 4.932976, 0.632026], 5) )
# KNN.test()
K临近算法的更多相关文章
- [Machine-Learning] K临近算法-简单例子
k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...
- 机器学习(Machine Learning)算法总结-K临近算法
一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeig ...
- 秒懂机器学习---k临近算法(KNN)
秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...
- 机器学习-- 入门demo1 k临近算法
1.k-近邻法简介 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法. 它的工作原理是:存在一个样本数据集合,也称作为 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 分类算法----k近邻算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
随机推荐
- 解决vs code 内置终端,字体间隔过大问题。(linux centos7成功)
如图. 去文件-首选项-设置里修改. "terminal.integrated.fontFamily": ""注意此处默认为空白,所以显示的就比较奇怪. 此处我 ...
- ABP Quartz 作业调度第三篇
1.第一步安装Abp.Quartz ,把他安装到核心层 核心模块添加对quarz的依赖, 领域层创建firstjob类 public class FirstJob : JobBase, ITransi ...
- 为docker配置HTTP代理服务器
背景: node1不能访问外网, node2可以访问外网,node1通过node2的代理服务来访问外网. 1. node1不能访问外网 vim /etc/resolv.conf 注释掉DNS配置文件 ...
- 【转】C#单元测试,带你快速入门
[转]C#单元测试,带你快速入门 注:本文示例环境 VS2017 XUnit 2.2.0 单元测试框架 xunit.runner.visualstudio 2.2.0 测试运行工具 Moq 4.7.1 ...
- nginx图解
1.Http代理,反向代理:作为web服务器最常用的功能之一,尤其是反向代理. 这里我给来2张图,对正向代理与反响代理做个诠释,具体细节,大家可以翻阅下资料. Nginx在做反向代理时,提供性能稳定, ...
- Unity AssetBundle打包资源工具
using UnityEngine;using System.Collections;using UnityEditor; /// <summary>/// 简单资源打包Editor/// ...
- 2019.02.15 bzoj5210: 最大连通子块和(链分治+ddp)
传送门 题意:支持单点修改,维护子树里的最大连通子块和. 思路: 扯皮: bzojbzojbzoj卡常差评. 网上的题解大多用了跟什么最大子段和一样的转移方法. 但是我们实际上是可以用矩阵转移的传统d ...
- Vue入门---常用指令详解
Vue入门 Vue是一个MVVM(Model / View / ViewModel)的前端框架,相对于Angular来说简单.易学上手快,近两年也也别流行,发展速度较快,已经超越Angular了.比较 ...
- vue.js项目nginx部署
开发环境搭建完成.二.编译部署1.项目路径下demo输入命令npm run build编译完成后会发现在demo文件夹下多出一个dist文件夹这里面就是编译好的文件了.2.网上下载nginx,下载地址 ...
- 14:IO之字符字节流
字节流: InputStream OutputStream 字节流: FileInputStream FileOutputStream BufferedInputStream Buffer ...