显然只需要考虑与障碍点相邻的格子,通过旋转坐标系,可以只考虑障碍点在格子上方的情况。

悬线法求出每个点往上的最长延伸距离$x$,以及往左往右的延伸距离$y$。

那么当$r\geq x$时,$c$至多为$y$。

特别地,当某个点下方也是障碍点的时候,$r$不能超过$x$。

维护出每个$r$对应的最大的$c$即可。

时间复杂度$O(nm)$。

#include<cstdio>
#include<algorithm>
const int N=2505;
int n,m,i,j,k,l[N],r[N],h[N],f[N],ans,pos;char a[N][N],b[N][N];
inline void up(int&a,int b){a>b?(a=b):0;}
void work(int n,int m,int rev){
int i,j,k,x,y;
for(i=1;i<=m;i++)l[i]=1,r[i]=m,h[i]=0,a[n+1][j]='_';
for(i=1;i<=n;i++){
for(j=k=1;j<=m;j++)if(a[i][j]=='X'){
h[j]++;
if(k>l[j])l[j]=k;
}else h[j]=0,l[j]=1,r[j]=m,k=j+1;
for(j=k=m;j;j--)if(a[i][j]=='X'){
up(r[j],k);
x=h[j],y=r[j]-l[j]+1;
if(rev){
up(f[y+1],x-1);
if(a[i+1][j]=='_')up(f[1],x);
}else{
up(f[x],y);
if(a[i+1][j]=='_')f[x+1]=0;
}
}else k=j-1;
}
}
int main(){
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%s",a[i]+1),f[i]=m;
for(i=0;i<4;i++){
work(n,m,i&1);
for(j=1;j<=n;j++)for(k=1;k<=m;k++)b[k][n-j+1]=a[j][k];
std::swap(n,m);
for(j=1;j<=n;j++)for(k=1;k<=m;k++)a[j][k]=b[j][k];
}
for(i=1;i<=n;i++){
if(i>1)up(f[i],f[i-1]);
if(i*f[i]>ans)ans=i*f[i],pos=i;
}
return printf("%d %d",pos,ans/pos),0;
}

  

BZOJ3736 : [Pa2013]Karty的更多相关文章

  1. BZOJ 3736: [Pa2013]Karty

    Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. 【BZOJ3733】[Pa2013]Iloczyn (搜索)

    [BZOJ3733][Pa2013]Iloczyn (搜索) 题面 BZOJ 题解 把约数筛出来之后,直接爆搜,再随便剪枝就过了. 最近一句话题解倾向比较严重 #include<iostream ...

  4. 【BZOJ3837】[Pa2013]Filary 随机化神题

    [BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...

  5. 【BZOJ3837】[PA2013]Filary

    [BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...

  6. 【BZOJ】3737: [Pa2013]Euler

    题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...

  7. BZOJ3733 : [Pa2013]Iloczyn

    首先将$n$的约数从小到大排序,设$dfs(x,y,z)$表示当前可以选第$x$个到第$m$个约数,还要选$y$个,之前选的乘积为$z$是否可能. 爆搜的时候,如果从$x$开始最小的$y$个相乘也超过 ...

  8. BZOJ3839 : [Pa2013]Działka

    对于每个询问,首先可以通过扫描线+线段树求出四个方向的第一个点,询问范围等价于框住这些点的最小矩形. 对于一个点$i$,预处理出: $A[i][j]$:$i$往左下角按凸壳走到$j$时,凸壳上相邻两点 ...

  9. BZOJ3838 : [Pa2013]Raper

    将选取的$A$看成左括号,$B$看成右括号,那么答案是一个合法的括号序列. 那么只要重复取出$k$对价值最小的左右括号,保证每时每刻都是一个合法的括号序列即可. 将$($看成$1$,$)$看成$-1$ ...

随机推荐

  1. python面向对象三大特性之继承

    继承是创建新类的方法,以下是几个概念 父类,基类,超类: 被继承的类 子类,派生类:继承而产出的类 单继承:继承一个父类 多继承:继承多个父类 继承: 什么是什么的关系 父类中没有的属性,在字类中出现 ...

  2. 小程序报错:request:fail错误(含https解决方案)(真机预览问题)

    问题描述:域名已经备案,我全部都有,也在后台配置了,但是手机预览,还是请求失败, PC端是可以请求数据出来的 新版开发者工具增加了https检查功能:可使用此功能直接本地避开ssl协议版本检查,但是此 ...

  3. SQLServer中处理亿万级别的数据

    在SQLServer中处理亿万级别的数据(历史数据),可以按以下方面进行: 去掉表的所有索引 用SqlBulkCopy进行插入 分表或者分区,减少每个表的数据总量 在某个表完全写完之后再建立索引 正确 ...

  4. 【转】android:paddingLeft与android:layout_marginLeft的区别

    http://www.blogjava.net/anchor110/articles/342206.html 当按钮分别设置以上两个属性时,得到的效果是不一样的. android:paddingLef ...

  5. HTML元素粘滞融合效果

    .target { filter: url("#goo"); } .ball { width: 150px; height: 150px; border-radius: 50%; ...

  6. form表单利用iframe高仿ajax

    html代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  7. CodeForces 516B Drazil and Tiles 其他

    原文链接http://www.cnblogs.com/zhouzhendong/p/8990658.html 题目传送门 - CodeForces 516B 题意 给出一个$n\times m$的矩形 ...

  8. tomcat配置调优与安全总结

    http://vekergu.blog.51cto.com/9966832/1672931 tomcat配置调优与安全总结 作为运维,避免不了与tomcat打交道,然而作者发现网络上关于tomcat配 ...

  9. 深入理解Python中赋值、深拷贝(deepcopy)、浅拷贝(copy)

    赋值 python跟java中的变量本质是不一样的,Python的变量实质上是一个指针(int型或str型),而java的变量是一个可操作的存储空间. a = 123b = a print(id(a) ...

  10. 怎样将一个Long类型的数据转换成字节数组

    直接上代码: //先写进去 long n = 1000000L; ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutpu ...