Style:Mac

Series:Java

Since:2018-09-10

End:2018-09-10

Total Hours:1

Degree Of Diffculty:5

Degree Of Mastery:5

Practical Level:5

Desired Goal:5

Archieve Goal:3

Gerneral Evaluation:3

Writer:kingdelee

Related Links:

http://www.cnblogs.com/kingdelee/

https://blog.csdn.net/daijin888888/article/details/66970902

在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:
这是算法的时空复杂度的表示。

不仅仅用于表示时间复杂度,也用于表示空间复杂度。

O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系,其中的n代表输入数据的量。

比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

举例

一组数据的数据量为10000,查找算法耗时2s,当数据量增大100倍时,n为100,即100W的数据

则0(n),耗时增大100倍,耗时为200s

0(n^2),耗时增大100^2,即10000,耗时为2000000s

0(logn),耗时增大log100,对数是6.6,即增大6.6倍,耗时为13.2s

O(nlogn),耗时增大100*log100,即增大100*6.6倍=660倍,耗时为660*2=1320s

一、算法的时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度。记作:T(n)=O(f(n))。它表示随问题n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中,f(n)是问题规模n的某个函数。

这样用大写O()来体现算法时间复杂度的记法,我们称之为大0记法

二、推导大O阶方法

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

三、推导示例

1、常数阶

首先顺序结构的时间复杂度。下面这个算法,是利用高斯定理计算1,2,……n个数的和。

int sum = 0, n = 100;       /*执行一次*/
sum = (1 + n) * n / 2; /*执行一次*/
printf("%d",sum); /*执行一次*/

  

这个算法的运行次数函数是f (n)  =3。 根据我们推导大0阶的方法,第一步就是把常数项3 改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为0(1)
     另外,我们试想一下,如果这个算法当中的语句 sum = (1+n)*n/2; 有10 句,则与示例给出的代码就是3次和12次的差异。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n 的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是0(1)。

2、线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。

int i;
for(i = 0; i < n; i++){
/*时间复杂度为O(1)的程序步骤序列*/
}

  

3、对数阶

如下代码:

int count = 1;
while (count < n){
count = count * 2;
  /*时间复杂度为O(1)的程序步骤序列*/
}

  

 

4、平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

int i, j;
for(i = 0; i < n; i++){
for(j = 0; j < n; j++){
/*时间复杂度为O(1)的程序步骤序列*/
}
}

  

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。 所以这段代码的时间复杂度为O(n^2)。

如果外循环的循环次数改为了m,时间复杂度就变为O(mXn)。

所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
    那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i, j;
for(i = 0; i < n; i++){
for(j = i; j < n; j++){ /*注意j = i而不是0*/
/*时间复杂度为O(1)的程序步骤序列*/
}
}

  

    由于当i=0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i=n-1时,执行了1次。所以总的执行次数为:

用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留时(n^2)/2; 第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。

从这个例子,我们也可以得到一个经验,其实理解大0推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力。

5、立方阶

下面例子是一个三重循环嵌套。

int i, j;
for(i = 1; i < n; i++)
for(j = 1; j < n; j++)
for(j = 1; j < n; j++){
/*时间复杂度为O(1)的程序步骤序列*/ }

  


这里循环了(1^2+2^2+3^2+……+n^2) = n(n+1)(2n+1)/6次,按照上述大O阶推导方法,时间复杂度为O(n^3)。

四、常见的时间复杂度

常见的时问复杂度如表所示。

    常用的时间复杂度所耗费的时间从小到大依次是:

    我们前面已经谈到了。O(1)常数阶、O(logn)对数阶、O(n)线性阶、 O(n^2)平方阶等,像O(n^3),过大的n都会使得结果变得不现实。同样指数阶O(2^n)和阶乘阶O(n!)等除非是很小的n值,否则哪怕n 只是100,都是噩梦般的运行时间。所以这种不切实际的算法时间复杂度,一般我们都不去讨论。

五、最坏情况与平均情况

我们查找一个有n 个随机数字数组中的某个数字,最好的情况是第一个数字就是,那么算法的时间复杂度为O(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是O(n),这是最坏的一种情况了。
    最坏情况运行时间是一种保证,那就是运行时间将不会再坏了。 在应用中,这是一种最重要的需求, 通常, 除非特别指定, 我们提到的运行时间都是最坏情况的运行时间。
    而平均运行时间也就是从概率的角度看, 这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。一般在没有特殊说明的情况下,都是指最坏时间复杂度

六、算法空间复杂度

我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一点心思写了一个算法,而且由于是一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。 还有另一个办法就是,事先建立一个有2050个元素的数组(年数略比现实多一点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一年是否是闰年,就变成了查找这个数组的某一项的值是多少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。这是通过一笔空间上的开销来换取计算时间的小技巧。到底哪一个好,其实要看你用在什么地方。
    算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)= O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。
    一般情况下,一个程序在机器上执行时,除了需要存储程序本身的指令、常数、变量和输入数据外,还需要存储对数据操作的存储单元,若输入数据所占空间只取决于问题本身,和算法无关,这样只需要分析该算法在实现时所需的辅助单元即可。若算法执行时所需的辅助空间相对于输入数据量而言是个常数,则称此算法为原地工作,空间复杂度为0(1)。
     通常, 我们都使用"时间复杂度"来指运行时间的需求,使用"空间复杂度"指空间需求。当不用限定词地使用"复杂度'时,通常都是指时间复杂度。

七、一些计算的规则

1、加法规则

T(n,m) = T1(n) + T2(m) = O(max{f(n), g(m)})

2、乘法规则

T(n,m) = T1(n) * T2(m) = O(max{f(n)*g(m)})

3、一个经验

复杂度与时间效率的关系:
    

八、常用算法的时间复杂度和空间复杂度

---------------------

本文来自 皮卡丘啾啾 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/daijin888888/article/details/66970902?utm_source=copy

【Algorithm】-NO.140.Algorithm.1.Algorithm.1.001-【空间复杂度 时间复杂度 o(1), o(n), o(logn), o(nlogn)】-的更多相关文章

  1. PatentTips - Adaptive algorithm for selecting a virtualization algorithm in virtual machine environments

    BACKGROUND A Virtual Machine (VM) is an efficient, isolated duplicate of a real computer system. Mor ...

  2. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  3. [Algorithm] Breadth First JavaScript Search Algorithm for Graphs

    Breadth first search is a graph search algorithm that starts at one node and visits neighboring node ...

  4. [Algorithm] Beating the Binary Search algorithm – Interpolation Search, Galloping Search

    From: http://blog.jobbole.com/73517/ 二分检索是查找有序数组最简单然而最有效的算法之一.现在的问题是,更复杂的算法能不能做的更好?我们先看一下其他方法. 有些情况下 ...

  5. BSS Audio® Introduces Full-Bandwidth Acoustic Echo Cancellation Algorithm for Soundweb London Conferencing Processors

    BSS Audio® Introduces Full-Bandwidth Acoustic Echo Cancellation Algorithm for Soundweb London Confer ...

  6. 人脸识别算法准确率最终超过了人类 The Face Recognition Algorithm That Finally Outperforms Humans

    Everybody has had the experience of not recognising someone they know—changes in pose, illumination ...

  7. MR for Baum-Welch algorithm

    The Baum-Welch algorithm is commonly used for training a Hidden Markov Model because of its superior ...

  8. [Algorithm] 如何正确撸<算法导论>CLRS

    其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...

  9. Expanded encryption and decryption signature algorithm SM2 & SM3

    Expanded encryption and decryption signature algorithm supports multiple signature digest algorithms ...

随机推荐

  1. jQuery创建元素和添加子元素

    var li = $("<li class=\"TopNav arrow\" secondMenu=\"menu_" + i + "\ ...

  2. java语言的优缺点

    转载自:https://blog.csdn.net/bingshanyijiao_fkx/article/details/51613954 角度一: 优点:简单.安全.稳定.跨平台 缺点:需要运行环境 ...

  3. mybatis-plus忽略映射字段

    mybatis-plus使用对象属性进行SQL操作,经常会出现对象属性非表字段的情况,忽略映射字段使用以下注解: @TableField(exist = false):表示该属性不为数据库表字段,但又 ...

  4. UE4/Unity3d 根据元数据自动生成与更新UI

    大家可能发现一些大佬讲UE4,首先都会讲类型系统,知道UE4会根据宏标记生成一些特定的内容,UE4几乎所有高级功能都离不开这些内容,一般来说,我们不会直接去使用它. 今天这个Demo内容希望能加深大家 ...

  5. 框架源码系列十:Spring AOP(AOP的核心概念回顾、Spring中AOP的用法、Spring AOP 源码学习)

    一.AOP的核心概念回顾 https://docs.spring.io/spring/docs/5.1.3.RELEASE/spring-framework-reference/core.html#a ...

  6. Canvas组件:画布,可以实现动画操作。

    Module  10 Canvas组件:画布,可以实现动画操作. TextArea:文本域. 在单行文本域中回车会激发ActionEvent. 用CheckBoxGroup实现单选框功能. Java中 ...

  7. Linux 相关术语_002

    Linux(Linux is not unix)是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统. 它能运行主要的UNIX工 ...

  8. open-falcon监控Flume

    1.首先你需要知道flume的http监控端口是否启动 请参考博文 Flume的监控参数 即在 http://localhost:3000/metrics 可以访问到如下内容 2.在open-falc ...

  9. 9. Oracle DataGuard的介绍

    一. Oracle DataGuard简介 Oracle DataGuard:简称DG.是由一个Primary Database(主库)和一个或者多个Standby Database(备库)组成.对O ...

  10. js中的运算符优先级

    运算符有何很多,基本的可能都比较熟,单有些优先级很难记住.建议使用“()”将复杂的运算表达式区分好优先级. 我给运算符优先级做了一首小打油诗. 括号成员new函数 直new后置累计数 单目幂算乘除模 ...