Numpy三维数组的转置与交换轴
二维数组的转置应该都知道,就是行列交换
而在numpy中也可以对三维数组进行转置,np.T 默认进行的操作是将0轴与2轴交换
本文主要对三位数组轴交换的理解上发表本人的看法。
a = np.array(range(24)) Out[101]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23]) b = a.reshape(2,3,4)
b
Out[103]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
在三位数组中我们称三个轴分别为行,列,面
在数组b中,
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],是一行
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]是一行
展开写[[ 0, 1, 2, 3],[ 4, 5, 6, 7],[ 8, 9, 10, 11]]看的更清楚。这是行的概念
[ 0, 1, 2, 3],是一列
[ 4, 5, 6, 7],是一列
[ 8, 9, 10, 11]是一列
而其中[0,4,8] [1,5,9] [2,6,10] [3,7,11]分别是一个面
回过头来可以发现,b是由2行3列4面组成的三维数组 (行代表0轴,列1轴,面2轴) 接下来记住一句话,交换哪两个轴,要保持另一个轴不改变,示例如下
取c为b的列和面交换后的数组
c = b.swapaxes(1,2) c
Out[105]:
array([[[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]], [[12, 16, 20],
[13, 17, 21],
[14, 18, 22],
[15, 19, 23]]])
回想那句话,交换哪两个轴,另一个轴不变,可以发现c还是两行,而且交换只是在每一行中发生变化
原来的列变成了面,原来的面变成了列
看第二种,d表示b的0轴和2轴的交换
d = b.swapaxes(0,2) d
Out[108]:
array([[[ 0, 12],
[ 4, 16],
[ 8, 20]], [[ 1, 13],
[ 5, 17],
[ 9, 21]], [[ 2, 14],
[ 6, 18],
[10, 22]], [[ 3, 15],
[ 7, 19],
[11, 23]]])
看上去有点蒙逼了,但还是想一下那句话,交换了0轴和2轴,那么1轴是不变的。
我们把原来的b看成是以行和面为元素的二维数组
即b是两行,四面。每个面用第一个元素代替 即[0,4,8] 用[0]来代替
即b可以写成[[0],[1],[2],[3]
[12],[13],[14],[15]]
然后进行交换轴 其实也就变成了二维数组的转置
变换后为[0],[12]
[1],[13]
[2],[14]
[3],[15]
最后我们再把每个面展开,就得到结果了。到现在你有没有法线,面中的元素个数与列的大小是一样的。
好了,接下来你可以试试将0轴与1轴交换。一步一步来,欢迎评论区讨论。
Numpy三维数组的转置与交换轴的更多相关文章
- PIL对象和numpy三维数组的互相转换
#https://stackoverflow.com/questions/384759/how-to-convert-a-pil-image-into-a-numpy-array from PIL i ...
- numpy中三维数组转变成二维数组
numpy中reshape()函数对三维数组进行转换成二维数组,见下面例子: >>>a=np.reshape(np.arange(18),(3,3,2)) >>> ...
- numpy基础教程--二维数组的转置
使用numpy库可以快速将一个二维数组进行转置,方法有三种 1.使用numpy包里面的transpose()可以快速将一个二维数组转置 2.使用.T属性快速转置 3.使用swapaxes(1, 0)方 ...
- 一、Numpy基础--数组
(一)Numpy数组对象 Numpy中的nadrray是一个多维数组对象,该对象由两部分组成: 实际的数据 描述这些数据的元数据 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. 数组的数 ...
- Numpy | 12 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 一.修改数组形状 函数 描述 reshape 不改变数据 ...
- NumPy:数组计算
一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环 ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- C语言三维数组分解
很多人在学习C的时候,感觉三维数组很难想象,而且不理解深度是什么?做了一个图,帮大家分解一下 ...
- numpy的数组常用运算练习
import numpy as np # 一维数组 print('==========# 一维数组===========') A = np.array([1, 2, 3, 4]) print(A) # ...
随机推荐
- Python全栈之路----常用模块----random模块
程序中有很多地方需要用到随机字符,比如登陆网站的随机验证码,通过random模块可以很容易生成随机字符串. >>> import random >>> random ...
- 寒假作业pta2
7-1 币值转换 (20 分) 输入一个整数(位数不超过9位)代表一个人民币值(单位为元),请转换成财务要求的大写中文格式.如23108元,转换后变成"贰万叁仟壹百零捌"元.为了简 ...
- solr 学习笔记(一)--搜索引擎简介
一 搜索引擎是什么一套可对大量结构化.半结构化数据.非结构化文本类数据进行实时搜索的专门软件最早应用于信息检索领域,经谷歌.百度等公司推出网页搜索而为大众广知.后又被各大电商网站采用来做网站的商品搜索 ...
- java程序连接oracle12c报:java.sql.SQLException: ORA-28040: 没有匹配的验证协议。
报错信息: 2017-09-22 15:17:37,204 WARN [org.hibernate.cfg.SettingsFactory] - Could not obtain connection ...
- spring--多人开发,模块化配置
需要在配置文件中配置: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="h ...
- 安装httpd服务
1.yum安装httpd服务 2.启动httpd服务端口被占用 3.修改端口 4.启动httpd服务 5.输入网址是否正常能访问
- Spring IOC 相关的面试题
Spring最基础的部分就是IOC,对IOC的理解程度从某个方面代表着你对Spring 的理解程度,看了网上的一些面试题,针对Spring IOC相关的重点是下面几个: 1.Spring中Bean ...
- 论文阅读笔记:【MDNet】
[MDNET]: H Nam, B Han. Learning multi-domain convolutional neural networks for visual tracking[C]. / ...
- freemarker语法介绍及其入门教程实例
# freemarker语法介绍及其入门教程实例 # ## FreeMarker标签使用 #####一.FreeMarker模板文件主要有4个部分组成</br>#### 1.文本,直接输 ...
- threading模块小结
这篇文章是别人文章的一个观后小结,不是什么原创. 首先第一个例子: import threading import time def worker(): print "worker& ...