传送门


发现它的本质是求一个费用最小的路径覆盖

最小路径覆盖是网络流23题中的一个比较典型的模型

所以考虑相似的建边

因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\(A_i,B_i\)两个点,\(S->B_i , A_i -> T\),原图中的边\((i,j)\)变为\(B_i -> A_j\),费用不变。

接下来我们需要考虑费用的设置

首先\(S->B_i\)的边的费用显然是通过空间跳跃到达这个点需要的时间\(a_i\)。

但有一个问题:在上面以最小路径覆盖问题为模板建立出的模型中,点\(B_i\)的出度流对应的实际上只是一条路径上的一条边\((i,j)\)而并非一整条路径。这意味着一条路径上除了终点以外所有点的\(a_i\)在费用流中都被加了进来。

考虑怎么减掉这个额外出现的空间跳跃费用。不难想到将\(A_i -> T\)边的费用设置为\(-a_i\)。这样非起点非终点的所有点\(a_i\)的贡献就会变为\(0\)。但是在这种情况下终点\(a_i\)的贡献却又是\(-a_i\)。

发现问题在于\(S->B_i\)边没有流。那么加上\(B_i -> T\)、流量1费用0的边,这样\(S->B_i\)就会有\(1\)的流,终点的空间跳跃时间就会变为\(0\),就能保证路径上所有点空间跳跃时间是正确的了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#define INF 0x3f3f3f3f
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c) && c != EOF){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    if(c == EOF)
        exit(0);
    while(isdigit(c)){
        a = (a << 3) + (a << 1) + (c ^ '0');
        c = getchar();
    }
    return f ? -a : a;
}

const int MAXN = 2e4 + 3 , MAXM = 1e5 + 3;
struct Edge{
    int end , upEd , f , c;
}Ed[MAXM];
int head[MAXN] , cur[MAXN] , dep[MAXN] , dis[MAXN] , pre[MAXN] , flo[MAXN];
int N , M , S , T , cntEd = 1;
bool vis[MAXN];
queue < int > q;

inline void addEd(int a , int b , int c , int d = 0){
    Ed[++cntEd].end = b;
    Ed[cntEd].upEd = head[a];
    Ed[cntEd].f = c;
    Ed[cntEd].c = d;
    head[a] = cntEd;
}

inline bool bfs(){
    while(!q.empty())
        q.pop();
    q.push(S);
    memset(dep , 0 , sizeof(dep));
    dep[S] = 1;
    while(!q.empty()){
        int t = q.front();
        q.pop();
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(Ed[i].f && !dep[Ed[i].end]){
                dep[Ed[i].end] = dep[t] + 1;
                if(Ed[i].end == T){
                    memcpy(cur , head , sizeof(head));
                    return 1;
                }
                q.push(Ed[i].end);
            }
    }
    return 0;
}

inline int dfs(int x , int mF){
    if(x == T)
        return mF;
    int sum = 0;
    for(int &i = cur[x] ; i ; i = Ed[i].upEd)
        if(Ed[i].f && dep[Ed[i].end] == dep[x] + 1){
            int t = dfs(Ed[i].end , min(mF - sum , Ed[i].f));
            if(t){
                Ed[i].f -= t;
                Ed[i ^ 1].f += t;
                sum += t;
                if(sum == mF)
                    break;
            }
        }
    return sum;
}

int Dinic(){
    int ans = 0;
    while(bfs())
        ans += dfs(S , INF);
    return ans;
}

inline bool SPFA(){
    memset(dis , 0x3f , sizeof(dis));
    dis[S] = 0;
    while(!q.empty())
        q.pop();
    q.push(S);
    flo[S] = INF;
    while(!q.empty()){
        int t = q.front();
        q.pop();
        vis[t] = 0;
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(Ed[i].f && dis[Ed[i].end] > dis[t] + Ed[i].c){
                dis[Ed[i].end] = dis[t] + Ed[i].c;
                flo[Ed[i].end] = min(Ed[i].f , flo[t]);
                pre[Ed[i].end] = i;
                if(!vis[Ed[i].end]){
                    vis[Ed[i].end] = 1;
                    q.push(Ed[i].end);
                }
            }
    }
    return dis[T] != dis[T + 1];
}

int EK(){
    int ans = 0;
    while(SPFA()){
        int cur = T , sum = 0;
        while(cur != S){
            sum += Ed[pre[cur]].c;
            Ed[pre[cur]].f -= flo[T];
            Ed[pre[cur] ^ 1].f += flo[T];
            cur = Ed[pre[cur] ^ 1].end;
        }
        ans += sum * flo[T];
    }
    return ans;
}

bool in[MAXN];
int nxt[MAXN];

int main(){
#ifndef ONLINE_JUDGE
    freopen("in" , "r" , stdin);
    //freopen("out" , "w" , stdout);
#endif
    N = read();
    M = read();
    T = 2 * N + 2;
    for(int i = 1 ; i <= N ; ++i){
        int a = read();
        addEd(S , i + N , 1 , a);
        addEd(i + N , S , 0 , -a);
        addEd(i , T , 1 , -a);
        addEd(T , i , 0 , a);
        addEd(i + N , T - 1 , 1);
        addEd(T - 1 , i + N , 0);
    }
    addEd(T - 1 , T , INF);
    addEd(T , T - 1 , 0);
    for(int i = 1 ; i <= M ; ++i){
        int a = read() , b = read() , c = read();
        if(a > b)
            swap(a , b);
        addEd(a + N , b , 1 , c);
        addEd(b , a + N , 0 , -c);
    }
    cout << EK();
    return 0;
}

Luogu2469 SDOI2010 星际竞速 费用流的更多相关文章

  1. BZOJ 1927: [Sdoi2010]星际竞速 费用流

    1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

  3. [SDOI2010]星际竞速——费用流

    类似于最短路的网络流,而且还要保证每个点经过一次,拆点就比较方便了. 连边怎么连?要保证最大流是n(每个点经过一次)还要能从直接跳转 将每个点拆点.源点向每个点的入点连一条容量为1费用为0的边.源点向 ...

  4. BZOJ 1927 星际竞速(费用流)

    考虑费用流,题目要求走n个点都走完且恰好一次,显然流量的限制为n. 建立源点s和汇点t,并把每个星球拆成两个点i和i',分别表示已到达该点和经过该点. 对于能力爆发,建边(s,i',1,w). 对应高 ...

  5. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  6. BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

    拆点,费用流... ----------------------------------------------------------------------------- #include< ...

  7. BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]

    1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...

  8. BZOJ1927 [Sdoi2010]星际竞速 【费用流】

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2582  Solved: 1601 [Submit][St ...

  9. P2469 [SDOI2010]星际竞速(费用流)

    P2469 [SDOI2010]星际竞速 最小路径覆盖问题 每个星球必须恰好去一次,而每次高速航行都是从一个星球到另一个星球. 那么高速航行的起点可以保证被去过 高速航行和空间跳跃可以是互相独立的 将 ...

随机推荐

  1. XHTML结构化

    XHTML 规则概要 将传统的 HTML 转换为 XHTML 1.0 是快捷且无痛的,只要你遵守一些简单的规则和容易的方针.不管是否使用过 HTML,都不会妨碍你使用 XHTML. 使用恰当的文档类型 ...

  2. Javascript异步编程之三Promise: 像堆积木一样组织你的异步流程

    这篇有点长,不过干货挺多,既分析promise的原理,也包含一些最佳实践,亮点在最后:) 还记得上一节讲回调函数的时候,第一件事就提到了异步函数不能用return返回值,其原因就是在return语句执 ...

  3. numpy之random学习

    在机器学习中参数初始化需要进行随机生成,同时样本也需要随机生成,或者遵从一定规则随机生成,所以对随机生成的使用显得格外重要. 有的是生成随机数,有的是随机序列,有点是从随机序列中选择元素等等. 简单的 ...

  4. 安卓开发_浅谈Fragment之事务添加Fragment对象

    我们都知道给一个activity动态添加fragment的时候 有下面几种添加方式 看一下布局文件 <LinearLayout xmlns:android="http://schema ...

  5. Android Studio 点击两次返回键,退出APP

    该功能的实现没有特别复杂,主要在onKeyDown()事件中实现,直接上代码,如下: //第一次点击事件发生的时间 private long mExitTime; /** * 点击两次返回退出app ...

  6. 三. Redis 主从复制

    特点 1. Master可以拥有多个Slave 2. 多个Slave除可以连接一个Master外,还可以连接多个Salve(避免Master挂掉不能同步,当Master挂掉,其中一个Slave会立即变 ...

  7. Django基础篇--用户权限管理和组管理

    Django作为一个成熟的python后台开发框架,为开发者提供了很多内置的功能,开发者只需要做一些配置就可以完成原生操作中比较复杂的代码编写.这些内置功能中其中一个比较强大的功能就是后台用户管理类. ...

  8. Linux笔记(二): WIN 10 Ubuntu 双系统

    (一)  说明 记录一次ubuntu安装过程及遇到的问题. 环境:WIN 10 单硬盘 (二)  ubuntu ISO文件下载 ubuntu 18.04 https://www.ubuntu.com/ ...

  9. windows任务管理器怎么知道多个IIS网站进程分别对应哪个网站

    摘要: 1.IIS网站对应的进程名一般叫w3wp.exe (windows2008系统为例,其他类似) 2.windows默认的任务管理器只能看到多个同名的进程名w3wp.exe,没法区别分别对应哪个 ...

  10. CentOS7:搭建配置SVN服务器

    1. 安装 CentOS通过yum安装subversion. $ sudo yum install subversion subversion安装在/bin目录: $ which svnserve / ...