求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数、求逆元、求阶乘。·。·
#include <iostream>
#include <cstdio>
#define ll long long
const int N=;//1e5越界
const ll M=1e9+;
using namespace std;
ll fac[N]={,},inv[N]={,},fi[N]={,};//fac[i]是i的阶乘,inv[i]是i的逆元,fi[i]是i之前的很多逆元求得阶乘,(将除i取模变为乘i的逆元取模 void init()
{
for(int i=;i<N;i++)
{
fac[i]=fac[i-]*i%M;
inv[i]=(M-M/i)*inv[M%i]%M;
fi[i]=inv[i]*fi[i-]%M;
}//递推保存fac阶乘,和fi各个逆元取模相乘
}
ll C(ll a,ll b)
{
return fac[a]*fi[b]%M*fi[a-b]%M;//C(a,b)=a!/(b!*(a-b)!)
}
int main()
{
init();
int n,m;
while(~scanf("%d%d",&n,&m))
{
cout<<C(m+n-,m-)<<endl;//求组合数
}
return ;
}
拓展欧几里得求逆元:
#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const LL INF = 0x3f3f3f3f;
const int maxn = 3e6 + ;
const LL mod = 1e9 + ; void exgcd(LL a, LL b, LL &x, LL &y) //拓展欧几里得算法
{
if(!b) x = , y = ;
else
{
exgcd(b, a % b, y, x);
y -= x * (a / b);
}
} LL niYuan(LL a, LL b) //求a对b取模的逆元
{
LL x, y;
exgcd(a, b, x, y);
return (x + b) % b;
} int main()
{
LL n, p;
cin >> n >> p;
for(int i=; i<=n; i++){
printf("%lld\n", niYuan(i,p));
} }
求组合数、求逆元、求阶乘 O(n)的更多相关文章
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...
- HDU-3240(卡特兰数+分解质因数后求逆元)
卡特兰数相关公式 : \(H_n = {C_{2n}^n \over n+1)}\) \(H_n = {(4n-2)\over n+1}\times H_{n-1}\) \(H_n = C_{2n}^ ...
- HDU4869:Turn the pokers(快速幂求逆元+组合数)
题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- 牛客小白月赛14 -B (逆元求组合数)
题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...
随机推荐
- (后台)java 读取excel 文件 Unable to recognize OLE stream 错误
原因:不支出读取 excel 2007 文件(*.xlsx).只支持 excel 2003 (*.xls). 光修改文件后缀不行,需要文件另存(或者导出)为 .xls Excel 1997-2004 ...
- [20180630]truncate table的另类恢复2.txt
[20180630]truncate table的另类恢复2.txt --//上个星期做了truncate table的另类恢复,通过修改数据块的段号,再通过rowid定位收集数据,达到修复的目的.- ...
- 使用linq语句进行联表查询
假设你有一个父表(例如:汽车),其关联一个子表,例如轮子(一对多).现在你想对于所有的父表汽车,遍历所有汽车,然后打印出来所有轮子的信息.默认的做法将是: SELECT CarId FROM Cars ...
- django 简单路由配置
Django==2.0.1 版本路由配置: 1.在manage.py同级目录下新建一个应用app1 在app1下新建urls.py文件,定义一个app1的空白路由: from django.urls ...
- Chrome 如何让光标快速定位到地址栏-进行搜索
我们经常花费大量的时间来进行使用浏览器搜索网页,如何进行高效的搜索,需要掌握一些快捷键: Windows: Ctrl + L 或 Alt + D 或 F6 Mac: Command + L Linux ...
- sklearn中各种分类器回归器都适用于什么样的数据呢?
作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- tkinter内嵌Matplotlib系列(一)之解读官网教材
目录 目录 前言 (一)小目标 1.首页卷面: 2.绘制一条函数曲线: 3.绘制多条曲线: (二)官方教材 1.对GUI框架的支持: 2.内嵌于tkinter的说明文档: (三)对官方教程的解读 目录 ...
- ios 百度地图使用
第一步.引入 1.下载SDK 地址http://developer.baidu.com/map/index.php?title=iossdk/sdkiosdev-download 2.解压出Baid ...
- iOS-单选cell的实现
一.思路 先设置一个chooseCelltag标记(类型为NSIndexPath),然后在点击cell触发的时候,如果tag设置有值,就设置 UITableViewCell *selectedCell ...
- Beta冲刺! Day3 - 砍柴
Beta冲刺! Day3 - 砍柴 今日已完成 晨瑶:追查进度:确定推荐算法 昭锡:查看Note模块的处理逻辑.查找主页UI的解决方案 永盛:数据库的大量整合和新建,备份和还原:完成部分新的逻辑 立强 ...