在O(n)的时间内求组合数、求逆元、求阶乘。·。·

 #include <iostream>
#include <cstdio>
#define ll long long
const int N=;//1e5越界
const ll M=1e9+;
using namespace std;
ll fac[N]={,},inv[N]={,},fi[N]={,};//fac[i]是i的阶乘,inv[i]是i的逆元,fi[i]是i之前的很多逆元求得阶乘,(将除i取模变为乘i的逆元取模 void init()
{
for(int i=;i<N;i++)
{
fac[i]=fac[i-]*i%M;
inv[i]=(M-M/i)*inv[M%i]%M;
fi[i]=inv[i]*fi[i-]%M;
}//递推保存fac阶乘,和fi各个逆元取模相乘
}
ll C(ll a,ll b)
{
return fac[a]*fi[b]%M*fi[a-b]%M;//C(a,b)=a!/(b!*(a-b)!)
}
int main()
{
init();
int n,m;
while(~scanf("%d%d",&n,&m))
{
cout<<C(m+n-,m-)<<endl;//求组合数
}
return ;
}

拓展欧几里得求逆元:

 #include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const LL INF = 0x3f3f3f3f;
const int maxn = 3e6 + ;
const LL mod = 1e9 + ; void exgcd(LL a, LL b, LL &x, LL &y) //拓展欧几里得算法
{
if(!b) x = , y = ;
else
{
exgcd(b, a % b, y, x);
y -= x * (a / b);
}
} LL niYuan(LL a, LL b) //求a对b取模的逆元
{
LL x, y;
exgcd(a, b, x, y);
return (x + b) % b;
} int main()
{
LL n, p;
cin >> n >> p;
for(int i=; i<=n; i++){
printf("%lld\n", niYuan(i,p));
} }

求组合数、求逆元、求阶乘 O(n)的更多相关文章

  1. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  2. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  3. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  5. HDU-3240(卡特兰数+分解质因数后求逆元)

    卡特兰数相关公式 : \(H_n = {C_{2n}^n \over n+1)}\) \(H_n = {(4n-2)\over n+1}\times H_{n-1}\) \(H_n = C_{2n}^ ...

  6. HDU4869:Turn the pokers(快速幂求逆元+组合数)

    题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...

  7. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  9. 牛客小白月赛14 -B (逆元求组合数)

    题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...

随机推荐

  1. android系统通过图片绝对路径获取URI的三种方法

    最近做项目要通过图片的绝对路径找到图片的URI,然后删除图片,小小总结一下获取URI的方法,亲自试验在 android 4.1.3的系统上都是可用的. 1.将所有的图片路径取出,遍历比较找到需要的路径 ...

  2. JavaScript大杂烩17 - 性能优化

    在上一节推荐实践中其实很多方面是与效率有关的,但那些都是语言层次的优化,这一节偏重学习大的方面的优化,比如JavaScript脚本的组织,加载,压缩等等. 当然在此之前,分析一下浏览器的特征还是很有意 ...

  3. HttpClient与浏览器调用服务接口差异

    我用httpclient访问接口,统计图有些不均匀,差距较大 ,有时只有几十毫秒,下图看到这种情况占多数,600-800毫秒之间的算是浏览器正常的产生调用接口的时间耗时 然后用jmeter跑时都是均值 ...

  4. AJAX的优点 个人理解记录

    1:对网站性能的提高.例如我只需要刷新页面中购物车的数据,使用ajax时不需要请求整个页面的数据,对于客户端和服务器的压力都会降低, 减少了ISP的负担,服务器的空间和带宽压力都会降低. 2:用户体验 ...

  5. Python之随机梯度下降

    实现:# -*- coding: UTF-8 -*-""" 练习使用随机梯度下降算法"""import numpy as npimport ...

  6. Python中识别DataFrame中的nan

    # 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float va ...

  7. 洗礼灵魂,修炼python(32)--面向对象编程(2)—进一步认识类

    上一篇文章已经看到了如何定义类,但是我想你应该有很多疑惑的吧?最好的学习方法就是不断思考,不断问为什么,不断和已有知识做类比,从中获得理解.那么这一篇博文就是从解惑答疑中进一步认识类. 解惑答疑 我按 ...

  8. NFS常见问题

    问题一:取消挂载失败 问题现象: umount /opt/data umount.nfs: /opt/data: device is busy umount.nfs: /opt/data: devic ...

  9. 第七章 鼠标(CHECKER4)

    /*--------------------------------------------- CHECKER4.C -- Mouse Hit-Test Demo Program No.4 (c) C ...

  10. jenkins安装及配置-centos6.9

    Jenkins安装及配置 目录 1.安装java. 2 1.1安装说明... 2 1.2创建java目录... 2 1.3下载并解压... 2 1.4设置环境变量... 2 1.5验证JDK有效性.. ...