在O(n)的时间内求组合数、求逆元、求阶乘。·。·

 #include <iostream>
#include <cstdio>
#define ll long long
const int N=;//1e5越界
const ll M=1e9+;
using namespace std;
ll fac[N]={,},inv[N]={,},fi[N]={,};//fac[i]是i的阶乘,inv[i]是i的逆元,fi[i]是i之前的很多逆元求得阶乘,(将除i取模变为乘i的逆元取模 void init()
{
for(int i=;i<N;i++)
{
fac[i]=fac[i-]*i%M;
inv[i]=(M-M/i)*inv[M%i]%M;
fi[i]=inv[i]*fi[i-]%M;
}//递推保存fac阶乘,和fi各个逆元取模相乘
}
ll C(ll a,ll b)
{
return fac[a]*fi[b]%M*fi[a-b]%M;//C(a,b)=a!/(b!*(a-b)!)
}
int main()
{
init();
int n,m;
while(~scanf("%d%d",&n,&m))
{
cout<<C(m+n-,m-)<<endl;//求组合数
}
return ;
}

拓展欧几里得求逆元:

 #include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const LL INF = 0x3f3f3f3f;
const int maxn = 3e6 + ;
const LL mod = 1e9 + ; void exgcd(LL a, LL b, LL &x, LL &y) //拓展欧几里得算法
{
if(!b) x = , y = ;
else
{
exgcd(b, a % b, y, x);
y -= x * (a / b);
}
} LL niYuan(LL a, LL b) //求a对b取模的逆元
{
LL x, y;
exgcd(a, b, x, y);
return (x + b) % b;
} int main()
{
LL n, p;
cin >> n >> p;
for(int i=; i<=n; i++){
printf("%lld\n", niYuan(i,p));
} }

求组合数、求逆元、求阶乘 O(n)的更多相关文章

  1. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  2. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  3. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  5. HDU-3240(卡特兰数+分解质因数后求逆元)

    卡特兰数相关公式 : \(H_n = {C_{2n}^n \over n+1)}\) \(H_n = {(4n-2)\over n+1}\times H_{n-1}\) \(H_n = C_{2n}^ ...

  6. HDU4869:Turn the pokers(快速幂求逆元+组合数)

    题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...

  7. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  9. 牛客小白月赛14 -B (逆元求组合数)

    题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...

随机推荐

  1. The packaging and installation process of Android programs

    D:\android\adt-bundle-windows-x86-20131019\sdk\platform-tools工具的路径. 安卓工程经过eclipse编译然后通过aapt工具打包生成一个. ...

  2. [20171211][转载]如何实现dbms_output输出没有打开serveroutput on.txt

    [20171211]如何实现dbms_output输出没有打开serveroutput on.txt http://orasql.org/2017/12/10/sqlplus-tips-8-dbms_ ...

  3. 测试中Android与IOS分别关注的点

    主要从本身系统的不同点.系统造成的不同点.和注意的测试点做总结 1.自身不同点 研发商:Adroid是google公司做的手机系统,IOS是苹果公司做的手机系统 开源程度:Android是开源的,IO ...

  4. 字典Key值为变量

    m='aaa4a' d = dict(name=m) print d['name']

  5. 关于elk中filebeat定义好日志输出,但是redis里面却没有输出内容的问题

    这两天在搞elk的时候,filebeat中指定输出日志至Broker(此处Broker采用redis作为缓存),但是redis中却没有内容,所以就开始排查来 filebeat采用RPM安装的方式来的. ...

  6. 第一条:了解Objective-C语言的起源

    第一条:了解Objective-C语言的起源 Objective-C使用的消息结构而非函数调用. Objective-C的重要工作都由"运行组件(runtime component)&quo ...

  7. 关于plist文件的那些事

    今天遇到新生问一个问题,就是用自己定义了一个plist文件,然后可以往里面写东西,但是写过再次运行的时候里面的数据总是最后一次写入的数据.后来就专门研究了一下plist文件. 大家都知道当你创建一个项 ...

  8. jQuery的收尾

    一  后台管理布局增删改 二  常用事件 三  jQuery扩展 一  后台管理布局增删改(多种方法) <!DOCTYPE html> <!-- saved from url=(00 ...

  9. Excel中IF函数的嵌套用法(多条件)

    Excel中IF函数的嵌套用法(多条件)   Excel中IF函数的嵌套用法(多条件)   函数格式:if(logical_test,value_if_true,value_if_false).其中: ...

  10. nginx和php-fpm调用方式

    一.背景: 在开发中碰到一个问题,项目以nginx+php-fpm形式访问交互,结果访问项目时报错如下图:   二.分析: 提示很明确嘛,去看error.log(在nginx.conf或者vhost里 ...