# -*- coding: UTF-8 -*-

import numpy as np
import math # 定义基础变量
learning_rate = 0.1
n_iterations = 10000
m = 100 x = 2 * np.random.rand(m, 1) # 生成一组服从0~1均匀分布的随机样本,此处表示生成100行一列的二维数组,下同
y = 4 + 3 * x + np.random.randn(m, 1) # 正态分布
x_b = np.c_[np.ones((m, 1)), x] # np.((100, 1)):表示生成100行1列的矩阵,内部填充为1 # 设置阈值
threshold = 0.15
# 1,初始化theta,w0...wn
theta = np.random.randn(2, 1)
count = 0
before_value = 1
# 4,设置阈值,之间设置超参数,迭代次数,迭代次数到了或者满足阈值,我们就认为收敛了
for iteration in range(n_iterations):
count += 1
# 2,接着求梯度gradient
gradients = 1/m * x_b.T.dot(x_b.dot(theta)-y) # 求平均梯度
# 3,应用公式调整theta值,theta_t + 1 = theta_t - grad * learning_rate
theta = theta - learning_rate * gradients
# 判断是否满足阈值
mid = math.sqrt(math.pow((theta[0][0] - 4), 2) + math.pow((theta[1][0] - 3), 2))
if mid <= threshold:
print('总共执行{}次迭代,可知迭代次数设置过大,建议适当减小!'.format(count))
break
# 若与上一次的中间结果比较差值过小也同样结束循环
err = math.fabs(mid - before_value)
if err < 0.001:
if before_value > threshold:
print('多次迭代都不能满足阈值,请修改阈值或重新处理数据!')
break
else:
print('总共执行{}次迭代,可知迭代次数设置过大,建议适当减小!'.format(count))
break
# 暂时保存上一次的中间结果
before_value = mid
print('结果:\n x is : {}\n y is : {}\n 误差 : {}'.format(theta[0][0], theta[1][0], before_value)) 结果:


Python实现批量梯度下降算法的更多相关文章

  1. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  2. 【转】梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  3. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  4. 梯度下降算法对比(批量下降/随机下降/mini-batch)

    大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...

  5. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  6. 三种梯度下降算法的区别(BGD, SGD, MBGD)

    前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...

  7. 梯度下降算法实现原理(Gradient Descent)

    概述   梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很 ...

  8. 线性回归和批量梯度下降法python

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib. ...

  9. 【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值

    [Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方), ...

随机推荐

  1. Spring Boot 集成 Mybatis 实现双数据源

    这里用到了Spring Boot + Mybatis + DynamicDataSource配置动态双数据源,可以动态切换数据源实现数据库的读写分离. 添加依赖 加入Mybatis启动器,这里添加了D ...

  2. LeetCode--No.008 String to Integer (atoi)

    8. String to Integer (atoi) Total Accepted: 112863 Total Submissions: 825433 Difficulty: Easy Implem ...

  3. 【LeetCode】1. 两数之和

    题目 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标.你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组中同样 ...

  4. Json数据中同字段不同数据类型的解析

    当解析Json数据时,如果碰到同字段不同数据类型的情况,如何处理呢?比如: [ { "code": 1, "data": 33 }, { "code& ...

  5. PHP-CPP开发扩展(三)

    PHP-CPP是一个用于开发PHP扩展的C++库.本节讲解PHP函数形参相关的实现. 指定函数参数类型 有时候,我们需要指定函数的形参是数组或者指定的,那么在PHP-CPP里是否可以指定函数的参数类型 ...

  6. eclipse配置ant开发环境,一键部署项目

    ANT出现之前,编译和部署Java应用需要使用包括特定平台的脚本.Make文件.不同的IDE以及手工操作等组成的大杂烩.现在,几乎所有的开源Java项目都在使用Ant,许多公司的开发项目也在使用Ant ...

  7. QMessageBox的使用

    /** 使用非静态API,属性设置API **/ QMessageBox msgBox; msgBox.setWindowTitle("Note");/** 设置标题 **/ ms ...

  8. ARM64 Linux kernel virtual address space

    墙外通道:http://thinkiii.blogspot.com/2014/02/arm64-linux-kernel-virtual-address-space.html Now let's ta ...

  9. HashMap源码解读(JDK1.7)

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  10. 正则检查是否为IP地址

    /// <summary> /// 是否为ip /// </summary> /// <param name="ip"></param&g ...