简介: 在《庖丁解牛-图解MySQL 8.0优化器查询解析篇》一文中我们重点介绍了MySQL最新版本8.0.25关于SQL基本元素表、列、函数、聚合、分组、排序等元素的解析、设置和转换过程,本篇我们继续来介绍更为复杂的子查询、分区表和JOIN的复杂转换过程。

作者 | 道客

来源 | 阿里技术公众号

一 背景和架构

在《庖丁解牛-图解MySQL 8.0优化器查询解析篇》一文中我们重点介绍了MySQL最新版本8.0.25关于SQL基本元素表、列、函数、聚合、分组、排序等元素的解析、设置和转换过程,本篇我们继续来介绍更为复杂的子查询、分区表和JOIN的复杂转换过程,大纲如下:

Transformation

  • remove_redundant_subquery_clause :

Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.

  • remove_base_options:

Remove SELECT_DISTINCT options from a query block if can skip distinct

  • resolve_subquery :Resolve predicate involving subquery, perform early unconditional subquery transformations

    • Convert subquery predicate into semi-join, or
    • Mark the subquery for execution using materialization, or
    • Perform IN->EXISTS transformation, or
    • Perform more/less ALL/ANY -> MIN/MAX rewrite
    • Substitute trivial scalar-context subquery with its value
  • transform_scalar_subqueries_to_join_with_derived:

Transform eligible scalar subqueries to derived tables.

  • flatten_subqueries :

Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.

  • apply_local_transforms :

    • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.
    • simplify_joins : Convert all outer joins to inner joins if possible.
    • prune_partitions :Perform partition pruning for a given table and condition.
  • push_conditions_to_derived_tables :

Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();

  • Window::eliminate_unused_objects:

Eliminate unused window definitions, redundant sorts etc.

二 详细转换过程

1 解析子查询(resolve_subquery)

解析条件中带有子查询的语句,做一些早期的无限制的子查询转换,包括:

  • 标记subquery是否变成semi-join

    • 转换判断条件
    • 检查OPTIMIZER_SWITCH_SEMIJOIN和HINT没有限制
    • 子查询是IN/=ANY和EXIST subquery的谓词
    • 子查询是简单查询块而不是UNION
    • 子查询无隐形和显性的GROUP BY
    • 子查询没有HAVING、WINDOW函数
    • Resolve的阶段是Query_block::RESOLVE_CONDITION和Query_block::RESOLVE_JOIN_NEST并且没有用到最新的Hyper optimizer优化器。
    • 外查询块可以支持semijoins
    • 至少要一个表,而不是类似"SELECT 1"
    • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
    • 父查询也至少有一个表
    • 父查询和子查询都不能有straight join
    • 父查询块不禁止semijoin
    • IN谓词返回值是否是确定的,不是RAND
    • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
    • Antijoin是可以支持的,或者是semijoin
    • offset和limit对于semjoin是有效的,offset是从第一行开始,limit也不是0
    • 设置Subquery_strategy::CANDIDATE_FOR_SEMIJOIN并添加sj_candidates
  • 标记subquery是否执行时采用materialization方案

    • 如果不符合转换semijoin,尝试使用物化方式,转换判断条件
    • Optimzier开关subquery_to_derived=on
    • 子查询是IN/=ANY or EXISTS谓词
    • 子查询是简单查询块而不是UNION
    • 如果是[NOT] EXISTS,必须没有聚合
    • Subquery谓词在WHERE子句(目前没有在ON子句实现),而且是ANDs or ORs的表达式tree
    • 父查询块支持semijoins
    • 子查询的策略还没有指定Subquery_strategy::UNSPECIFIED
    • 父查询也至少有一个表,然后可以做LEFT JOIN
    • 父查询块不禁止semijoin
    • IN谓词返回值是否是确定的,不是RAND
    • 根据子查询判断结果是否需要转成true还是false以及是否为NULL,判断是可以做antijoin还是semijoin
    • 不支持左边参数不是multi-column子查询(WHERE (outer_subq) = ROW(derived.col1,derived.col2))
    • 该子查询不支持转换为Derived table(m_subquery_to_derived_is_impossible)
    • 设置Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE并添加sj_candidates
  • 如果上面两个策略无法使用,根据类型选择transformer

    • Item_singlerow_subselect::select_transformer
    • 对于简单的标量子查询,在查询中直接用执行结果代替
select * from t1 where a = (select 1);
=>
select * from t1 where a = 1;

  • Item_in_subselect/Item_allany_subselect::select_transformer->select_in_like_transformer
  • select_in_like_transformer函数来处理 IN/ALL/ANY/SOME子查询转换transformation
  • 处理"SELECT 1"(Item_in_optimizer)
  • 如果目前还没有子查询的执行方式,也就是无法使用semijoin/antijoin执行的子查询,会做IN->EXISTS的转换,本质是在物化执行和迭代式循环执行中做选择。IN语法代表非相关子查询仅执行一次,将查询结果物化成临时表,之后需要结果时候就去物化表中查找;EXISTS代表对于外表的每一条记录,子查询都会执行一次,是迭代式循环执行。子查询策略设定为Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT
  • 重写single-column的IN/ALL/ANY子查询(single_value_transformer)
oe $cmp$ (SELECT ie FROM ... WHERE subq_where ... HAVING subq_having)
=>
- oe $cmp$ (SELECT MAX(...) ) // handled by Item_singlerow_subselect
- oe $cmp$ \<max\>(SELECT ...) // handled by Item_maxmin_subselect fails=>Item_in_optimizer
- 对于已经是materialized方案,不转换
- 通过equi-join转换IN到EXISTS

  • 如果是ALL/ANY单值subquery谓词,尝试用MIN/MAX子查询转换
SELECT * FROM t1 WHERE a < ANY (SELECT a FROM t1);
=>
SELECT * FROM t1 WHERE a < (SELECT MAX(a) FROM t1)

  • 不满足上面,调用single_value_in_to_exists_transformer转换IN到EXISTS

    • 转换将要将子查询设置为相关子查询,设置UNCACHEABLE_DEPENDENT标识
    • 如果子查询包含聚合函数、窗口函数、GROUP语法、HAVING语法,将判断条件加入到HAVING子句中,另外通过ref_or_null_helper来区分NULL和False的结果,如需要处理NULL IN (SELECT ...)还需要封装到Item_func_trig_cond触发器中。
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2)
=>
SELECT ... FROM t1 WHERE t1.b IN (SELECT <expr of SUM(t1.a)> FROM t2
[trigcond] HAVING t1.b=ref-to-<expr of SUM(t1.a)>)

  • 如果子查询不包含聚合函数、窗口函数、GROUP语法,会放在WHERE查询条件中,当然如果需要处理NULL情况还是要放入HAVING子句(Item_func_trig_cond+Item_is_not_null_test)。
不需要区分NULL和FALSE的子查询:

SELECT 1 FROM ... WHERE (oe $cmp$ ie) AND subq_where

需要区分的子查询:
SELECT 1 FROM ...
WHERE subq_where AND trigcond((oe $cmp$ ie) OR (ie IS NULL))
HAVING trigcond(@<is_not_null_test@>(ie))

  • JOIN::optimize()会计算materialization和EXISTS转换的代价进行选择,设置m_subquery_to_derived_is_impossible = true
  • ROW值转换,通过Item_in_optimizer,不支持ALL/ANY/SOME(row_value_transformer)

    • Item_in_subselect::row_value_in_to_exists_transformer
for (each left operand)
create the equi-join condition
if (is_having_used || !abort_on_null)
create the "is null" and is_not_null_test items
if (is_having_used)
add the equi-join and the null tests to HAVING
else
add the equi-join and the "is null" to WHERE
add the is_not_null_test to HAVING

  • 没有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... WHERE where) =>
EXISTS (SELECT ... WHERE where and
(l1 = v1 or is null v1) and
(l2 = v2 or is null v2) and
(l3 = v3 or is null v3)
[ HAVING is_not_null_test(v1) and
is_not_null_test(v2) and
is_not_null_test(v3)) ] <-- 保证不为NULL可以去掉HAVING

  • 有HAVING表达式
(l1, l2, l3) IN (SELECT v1, v2, v3 ... HAVING having) =>
EXISTS (SELECT ... HAVING having and
(l1 = v1 or is null v1) and
(l2 = v2 or is null v2) and
(l3 = v3 or is null v3) and
is_not_null_test(v1) and
is_not_null_test(v2) and
is_not_null_test(v3))

2 转换的标量子查询转换成Derived Table(transform_scalar_subqueries_to_join_with_derived)

该特性是官方在8.0.16中为了更好的支持Secondary Engine(Heapwave)的分析下推,增强了子查询的转换能力。可以先直观的看下转换和不转换的执行计划的不同:

root:test> set optimizer_switch = 'subquery_to_derived=off';
Query OK, 0 rows affected (0.00 sec) root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| 1 | PRIMARY | t4 | NULL | ALL | NULL | NULL | NULL | NULL | 10 | 100.00 | Using temporary |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where |
+----+--------------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
2 rows in set, 3 warnings (0.00 sec) root:test> set optimizer_switch = 'subquery_to_derived=on';
Query OK, 0 rows affected (0.00 sec) root:test> EXPLAIN SELECT b, MAX(a) AS ma FROM t4 GROUP BY b HAVING ma < (SELECT MAX(t2.a) FROM t2 WHERE t2.b=t4.b);
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| 1 | PRIMARY | t4 | NULL | ALL | NULL | NULL | NULL | NULL | 10 | 100.00 | Using temporary |
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 100.00 | Using where; Using join buffer (hash join) |
| 2 | DERIVED | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 100.00 | Using temporary |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
3 rows in set, 3 warnings (0.01 sec)

  • transform_scalar_subqueries_to_join_with_derived具体转换的过程如下:

    • 首先从JOIN条件、WHERE条件、HAVING条件和SELECT list中收集可以转换的标量子查询(Item::collect_scalar_subqueries)。
    • 遍历这些子查询,判断是否可以增加一个额外的转换(transform_grouped_to_derived):把隐性的GROUP BY标量子查询变成Derived Table。
SELECT SUM(c1), (SELECT SUM(c1) FROM t3) scalar FROM t1;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0
LEFT JOIN
(SELECT SUM(b) AS scalar FROM t3) AS derived1
ON TRUE
执行计划如下:
explain SELECT SUM(a), (SELECT SUM(c1) FROM t3) scalar FROM t1;
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
| 1 | PRIMARY | <derived3> | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | NULL |
| 1 | PRIMARY | <derived4> | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | Using where; Using join buffer (hash join) |
| 4 | DERIVED | t3 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | NULL |
| 3 | DERIVED | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 2 | 100.00 | NULL |
+----+-------------+------------+------------+------+---------------+------+---------+------+------+----------+--------------------------------------------+
  • 收集唯一的聚合函数Item列表(collect_aggregates),这些Item将会被新的Derived Table的列代替。

    • 还需要添加所有引用到这些Item的fields,包括直接在SELECT列表的,Window函数参数、ORDER by、Partition by包含的,还有该查询块中ORDER BY的列,因为他们都会引动到Derived Table里。
    • 创建Derived Table需要的Query_expression/Query_block(create_query_expr_and_block)。
    • 添加Derived Table到查询块和top_join_list中。
    • 保留旧的子查询单元块,如果包含可以转化的Derived的移到Derived Table下面的Query_block,如果不包含,保留到原来的子查询块中。
    • 将之前的聚合函数Item列表插入到Derived Table的查询块中。
    • 收集除GROUP AGG表达式中的列,由于这些fields已经移动到Derived Table中,删除不合理的fields引用。
    • 收集所有唯一的列和View的引用后,将他们加到新的Derived Table列表中。
    • 对新的新的Derived Table进行flatten_subqueries/setup_tables
    • 重新resolve_placeholder_tables,不处理进行转换后的子查询。
    • 处理Derived Table中,新加入的HAVING条件中的聚合函数Item,并通过Item_aggregate_refs引用到new_derived->base_ref_items而不是之前的父查询块base_ref_items。
    • 永久代替父查询块中的聚合函数列表,变成Derived Table的列,并删除他们。
    • 之前保存和加入到Derived Table的唯一的列和View的引用,也要替换新的fields代替他们的引用。

  • 但目前不支持HAVING表达式中包含该子查询,其实也是可以转换的。
SELECT SUM(a), (SELECT SUM(b) FROM t3) scalar
FROM t1
HAVING SUM(a) > scalar;
转换为=>
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0
LEFT JOIN
(SELECT SUM(b) AS scalar FROM t3) AS derived1
ON TRUE
WHERE derived0.sum > derived1.scalar;

  • 接下来遍历所有可以转换的子查询,把他们转换成derived tables,并替换相应的表达式变成列(transform_subquery_to_derived)。

    • 生成derived table的TABLE_LIST(synthesize_derived)。
    • 将可以移动到derived table的where_cond设置到join_cond上。
    • 添加derived table到查询块的表集合中。
    • decorrelate_derived_scalar_subquery_pre
    • 添加非相关引用列(NCF)到SELECT list,这些条件被JOIN条件所引用,并且还有另外一个fields包含了外查询相关的列,我们称之为'lifted_where'
    • 添加COUNT(*)到SELECT list,这样转换的查询块可以进行cardinality的检查。比如没有任何聚合函数在子查询中。如果确定包含聚合函数,返回一行一定是NCF同时在GROUP BY列表中。
    • 添加NCF到子查询的GROUP列表中,如果已经在了,需要加到最后,如果发生GROUP BY的列由于依赖性检查失败,还要加Item_func_any_value(非聚合列)到SELECT list。对于NCF会创建 derived.field和derived.count(field) 。
    • 设置物化的一些准备(setup_materialized_derived)。
    • decorrelate_derived_scalar_subquery_post:
    • 创建对应的'lifted_fields'。
    • 更新JOIN条件中相关列的引用,不在引用外查询而换成Derived table相关的列。
  • 代替WHERE、JOIN、HAVING条件和SELECT list中的子查询的表达式变成对应的Derived Table里面列。

下面图解该函数的转换过程和结果:

3 扁平化子查询(flatten_subqueries)

该函数主要是将Semi-join子查询转换为nested JOIN,这个过程只有一次,并且不可逆。

  • 简单来讲步骤可以简化理解为:

    • 创建SEMI JOIN (it1 ... itN)语以部分,并加入到外层查询块的执行计划中。
    • 将子查询的WHERE条件以及JOIN条件,加入到父查询的WHERE条件中。
    • 将子查询谓词从父查询的判断谓词中消除。
  • 由于MySQL在一个query block中能够join的tables数是有限的(MAX_TABLES),不是所有sj_candidates都可以做因此做flatten_subqueries 的,因此需要有优先级决定的先后顺序先unnesting掉,优先级规则如下:

    • 相关子查询优先于非相关的
    • inner tables多的子查询大于inner tables少的
    • 位置前的子查询大于位置后的
subq_item->sj_convert_priority =
(((dependent * MAX_TABLES_FOR_SIZE) + // dependent subqueries first
child_query_block->leaf_table_count) *
65536) + // then with many tables
(65536 - subq_no); // then based on position

  • 另外,由于递归调用flatten_subqueries是bottom-up,依次把下层的子查询展开到外层查询块中。
    for SELECT#1 WHERE X IN (SELECT #2 WHERE Y IN (SELECT#3)) :

    Query_block::prepare() (select#1)
-> fix_fields() on IN condition
-> Query_block::prepare() on subquery (select#2)
-> fix_fields() on IN condition
-> Query_block::prepare() on subquery (select#3)
<- Query_block::prepare()
<- fix_fields()
-> flatten_subqueries: merge #3 in #2
<- flatten_subqueries
<- Query_block::prepare()
<- fix_fields()
-> flatten_subqueries: merge #2 in #1

  • 遍历子查询列表,删除Item::clean_up_after_removal标记为Subquery_strategy::DELETED的子查询,并且根据优先级规则设置sj_convert_priority。根据优先级进行排序。
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE策略的子查询,转换子查询([NOT] {IN, EXISTS})为JOIN的Derived table(transform_table_subquery_to_join_with_derived)
FROM [tables] WHERE ... AND/OR oe IN (SELECT ie FROM it) ...
=>
FROM (tables) LEFT JOIN (SELECT DISTINCT ie FROM it) AS derived
ON oe = derived.ie WHERE ... AND/OR derived.ie IS NOT NULL ...
  • 设置策略为Subquery_strategy::DERIVED_TABLE

    • semijoin子查询不能和antijoin子查询相互嵌套,或者外查询表已经超过MAX_TABLE,不做转换,否则标记为Subquery_strategy::SEMIJOIN策略。
    • 判断子查询的WHERE条件是否为常量。如果判断条件永远为FALSE,那么子查询结果永远为空。该情况下,调用Item::clean_up_after_removal标记为Subquery_strategy::DELETED,删除该子查询。
    • 如果无法标记为Subquery_strategy::DELETED/设置Subquery_strategy::SEMIJOIN策略的重新标记会Subquery_strategy::UNSPECIFIED继续下一个。
    • 替换外层查询的WHERE条件中子查询判断的条件(replace_subcondition)
    • 子查询内条件并不永远为FALSE,或者永远为FALSE的情况下,需要改写为antijoin(antijoin情况下,子查询结果永远为空,外层查询条件永远通过)。此时将条件改为永远为True。
    • 子查询永远为FALSE,且不是antijoin。那么将外层查询中的条件改成永远为False。
  • Item_subselect::EXISTS_SUBS不支持有聚合操作

    • convert_subquery_to_semijoin函数解析如下模式的SQL
    • IN/=ANY谓词
  • 如果条件满足解关联,解关联decorrelate_condition
  • 添加解关联的内表表达式到 SELECT list
  • 收集FROM子句中的外表相关的 derived table或join条件
    • 去掉关联标识UNCACHEABLE_DEPENDENT,更新used table
  • Derived table子查询增加SELECT_DISTINCT标识
  • 转换子查询成为一个derived table,并且插入到所属于的查询块FROM后(transform_subquery_to_derived)
  • 创建derived table及其join条件
  • 遍历父查询块的WHERE,替换该子查询的Item代替成derived table(replace_subcondition)
  • 遍历排序后的子查询列表,对于Subquery_strategy::CANDIDATE_FOR_SEMIJOIN策略的子查询。
  • 判断是否可以转换为semijoin
  • 遍历排序后的子查询列表,对于Subquery_strategy::SEMIJOIN的子查询,开始转换为semijoin/antijoin(convert_subquery_to_semijoin)

    • convert_subquery_to_semijoin函数解析如下模式的SQL
    • IN/=ANY谓词
  SELECT ...
FROM ot1 ... otN
WHERE (oe1, ... oeM) IN (SELECT ie1, ..., ieM
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>
SELECT ...
FROM (ot1 ... otN) SJ (it1 ... itK)
ON (oe1, ... oeM) = (ie1, ..., ieM)
[AND inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]

  • EXISTS谓词
  SELECT ...
FROM ot1 ... otN
WHERE EXISTS (SELECT expressions
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>
SELECT ...
FROM (ot1 ... otN) SJ (it1 ... itK)
[ON inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]

  • NOT EXISTS谓词
  SELECT ...
FROM ot1 ... otN
WHERE NOT EXISTS (SELECT expressions
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>
SELECT ...
FROM (ot1 ... otN) AJ (it1 ... itK)
[ON inner-cond]
[WHERE outer-cond AND is-null-cond(it1)]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]

  • NOT IN谓词
  SELECT ...
FROM ot1 ... otN
WHERE (oe1, ... oeM) NOT IN (SELECT ie1, ..., ieM
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
=>
SELECT ...
FROM (ot1 ... otN) AJ (it1 ... itK)
ON (oe1, ... oeM) = (ie1, ..., ieM)
[AND inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]

  • 查找可以插入semi-join嵌套和其生成的条件的位置,比如对于 t1 LEFT JOIN t2, embedding_join_nest为t2,t2也可以是nested,如t1 LEFT JOIN (t2 JOIN t3))
  • 生成一个新的semijoin嵌套的TABLE_LIST表
  • 处理Antijoin
  • 将子查询中潜在的表合并到上述join表(TABLE_LIST::merge_underlying_tables)
  • 将子查询的叶子表插入到当前查询块的叶子表后面,重新设置子查询的叶子表的序号和依赖的外表。将子查询的叶子表重置。
  • 如果是outer join的话,在join链表中传递可空性(propagate_nullability)
  • 将内层子查询中的关联条件去关联化,这些条件被加入到semijoin的列表里。这些条件必须是确定的,仅支持简单判断条件或者由简单判断条件组成的AND条件(Query_block::decorrelate_condition)

    • 判断左右条件是否仅依赖于内外层表,将其表达式分别加入到semijoin内外表的表达式列表中(decorrelate_equality)
  • 解关联内层查询的join条件(Query_block::decorrelate_condition)
  • 移除该子查询表达式在父查询的AST(Query_express::exclude_level)
  • 根据semi-join嵌套产生的WHERE/JOIN条件更新对应的table bitmap(Query_block::fix_tables_after_pullout)
  • 将子查询的WHERE条件上拉,更新使用表的信息(Item_cond_and::fix_after_pullout())
  • 根据semijoin的条件列表创建AND条件,如果有条件为常量True,则去除该条件;如果常量为False,则整个条件都去除(Query_block::build_sj_cond)
  • 将创建出来的semijoin条件加入到外层查询的WHERE条件中
  • 最后遍历排序后的子查询列表,对于没有转换的子查询,对于Subquery_strategy::UNSPECIFIED的策略,执行IN->EXISTS改写(select_transformer),如果确实原有的子查询已经有替代的Item,调用replace_subcondition解析并把他们加入到合适的WHERE或者ON子句。
  • 清除所有的sj_candidates列表
  • Semi-join有5中执行方式,本文并不介绍Optimizer和Execution过程,详细可以参考引用文章中关于semijoin的介绍,最后引入下控制semijoin优化和执行的优化器开关,其中semijoin=on/off是总开关。
SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: ......
materialization=on,semijoin=on,loosescan=on,
firstmatch=on,
subquery_materialization_cost_based=on,
......

  • 下图举例说明该转换过程:
SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
=>
/* select#1 */
SELECT `t1`.`a` AS `a`
FROM `t1`
SEMI JOIN (`t2`)
WHERE ((`t1`.`a` = `t2`.`c1`) and (`t2`.`c1` > 0))
执行计划如下:
explain SELECT * FROM t1 WHERE t1.a in (SELECT t2.c1 FROM t2 where t2.c1 > 0);
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+
| 1 | SIMPLE | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | Using where; Start temporary |
| 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 2 | 50.00 | Using where; End temporary; Using join buffer (hash join) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------------------------------------------------+

4 应用当前查询块转换(apply_local_transforms)

该函数在flattern subqueries之后,bottom-up调用,主要分几个步骤:

删除无用列(delete_unused_merged_columns)

如果查询块已经删除了一些derived tables/views,遍历SELECT列表的列,删除不必要的列

简化JOIN(simplify_joins)

该函数会把Query_block中的top_join_list的嵌套join的简化为扁平化的join list。嵌套连接包括table1 join table2,也包含table1, (table2, table3)这种形式。如果所示的简化过程:

分区表的静态剪枝(prune_partitions)

由于剪枝根据HASH/RANGE/LIST及二级分区都有不同,这里简单介绍下剪枝过程,现有prune_partitions是在prepare和optimize阶段会被调用,某些常量子查询被评估执行完。

struct TABLE {
......
partition_info *part_info{nullptr}; /* Partition related information */
/* If true, all partitions have been pruned away */
bool all_partitions_pruned_away{false};
......
} SQL tranformation phase
SELECT_LEX::apply_local_transforms
--> prune_partitions for example, select * from employee where company_id = 1000 ; SQL optimizer phase
JOIN::prune_table_partitions
--> prune_partitions
------> based on tbl->join_cond_optim() or JOIN::where_cond for example, explain select * from employee where company_id = (select c1 from t1);

  • 举例下面RANGE剪枝的过程:
root:ref> CREATE TABLE R2  (
-> a INT,
-> d INT
-> ) PARTITION BY RANGE(a) (
-> PARTITION p20 VALUES LESS THAN (20),
-> PARTITION p40 VALUES LESS THAN (40),
-> PARTITION p60 VALUES LESS THAN (60),
-> PARTITION p80 VALUES LESS THAN (80),
-> PARTITION p100 VALUES LESS THAN MAXVALUE
-> );
Query OK, 0 rows affected (0.09 sec) root:ref> Select * From R2 where a > 40 and a < 80;

  • 剪枝详细过程如下:

    • 由于剪枝需要根据不同条件产生的pruning结果进行交集,因此剪枝过程中需要使用read_partitions这样的bitmap来保存是否使用该对应分区。另外剪枝过程类似迭代判断,因此引入了part_iterator来保存开始、结束和当前,以及对应需要获取区间范围的endpoint函数和获取下一个值next的迭代器函数。这里巧妙的运用了指针,来兼容不同分区类型Hash/Range/List类型,如下图所示:

  • 获取join_cond或者m_where_cond的SEL_TREE红黑树(get_mm_tree)
  • 调用find_used_partitions来获取满足的分区,对于SEL_TREE的每个区间(interval):1. 获取区间的左右端点 2.从左边继续获取下一个满足的分区,直到到右边端点结束,每次调用完需要进行bitmap的itersection。
  • 设置read_partitions和lock_partitions
  • find_used_partitions是根据SEL_TREE的结构进行递归,如图从左到右遍历next_key_part(and condition),然后再遍历SEL_TREE的左右(也就是上下方向,or condition)深度递归。
    (start)
| $
| Partitioning keyparts $ subpartitioning keyparts
| $
| ... ... $
| | | $
| +---------+ +---------+ $ +-----------+ +-----------+
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
+---------+ +---------+ $ +-----------+ +-----------+
| $ | |
| $ | +-----------+
| $ | | subpar2=c6|
| $ | +-----------+
| $ |
| $ +-----------+ +-----------+
| $ | subpar1=c4|--| subpar2=c8|
| $ +-----------+ +-----------+
| $
| $
+---------+ $ +------------+ +------------+
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
+---------+ $ +------------+ +------------+
| $
... $ 例如第一行(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c5)的遍历的stack将是:
in find_used_partitions(key_tree = "subpar2=c5") (***)
in find_used_partitions(key_tree = "subpar1=c3")
in find_used_partitions(key_tree = "par2=c2") (**)
in find_used_partitions(key_tree = "par1=c1")
in prune_partitions(...)
然后是继续下面的条件,以此类推
or(par1=c1 and par2=c2 and subpar1=c3 and subpar2=c6)
or(par1=c1 and par2=c2 and subpar1=c4 and subpar2=c8)
or(par1=c2 and subpar1=c10 and subpar2=c12)

  • 下图来展示了pruning的结构和过程:

5 下推条件到Derived Table(push_conditions_to_derived_tables)

该函数将条件下推到derived tables,详细见WL#8084 - Condition pushdown to materialized derived table。

root:test> set optimizer_switch = 'derived_merge=off'; // 关闭dervied_merge 测试下推能力
Query OK, 0 rows affected (0.00 sec) root:test> EXPLAIN FORMAT=tree SELECT * FROM (SELECT c1,c2 FROM t1) as dt WHERE c1 > 10;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Table scan on dt (cost=2.51..2.51 rows=1)
-> Materialize (cost=2.96..2.96 rows=1)
-> Filter: (t1.c1 > 10) (cost=0.35 rows=1)
-> Table scan on t1 (cost=0.35 rows=1)
|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

过程如下:

  • 遍历derived table列表,判断是否可以下推(can_push_condition_to_derived),如果包括下面的情况则不能下推:

    • Derived table有UNION
    • Derived table有LIMIT
    • Derived table不能是outer join中的内表,会导致更多NULL补偿的行
    • 不能是CTE包含的Derived table
  • 创建可以下推到的Derived table的where cond(Condition_pushdown::make_cond_for_derived)
  • 保留剩余不能下推的条件(Condition_pushdown::get_remainder_cond)
  • Top-down递归调用push_conditions_to_derived_tables

详细图解该过程如下:

三 综述

两篇文章重点介绍了下优化器的基于规则的优化部分,并没有涉及更多的基于代价的优化,可以看到对于直接运用规则优化带来执行的加速,那么可以直接转换,尤其是对于查询结构上面的变化类转换,如merge_derived。对于运用规则优化无法判断是否带来执行的加速,那么优化器会保留一些临时结构,为后续的代价估算提供更多选择,如IN/EXIST/Materialized转换。当然还有一些,又改变查询结构又无法判定是否规则转换带来的执行加速,MySQL目前还不支持。文章虽然详尽,但无法覆盖全部情况,也是为了抛砖引玉,还需要读者自己通过调试的方法更进一步了解某一类SQL的具体过程。

四 参考资料

《MySQL 8.0 Server层最新架构详解》

《WL#13520: Transform correlated scalar subqueries》

《WL#8084 - Condition pushdown to materialized derived table》

《WL#2980: Subquery optimization: Semijoin》

  • WL#3740: Subquery optimization: Semijoin: Pull-out of inner tables
  • WL#3741: Subquery optimization: Semijoin: Duplicate elimination strategy
  • WL#3750: Subquery optimization: Semijoin: First-match strategy
  • WL#3751: Subquery optimization: Semijoin: Inside-out strategy

《WL#4389: Subquery optimizations: Make IN optimizations also handle EXISTS》

《WL#4245: Subquery optimization: Transform NOT EXISTS and NOT IN to anti-join》

《WL#2985: Perform Partition Pruning of Range conditions》

《MySQL · 源码分析 · Semi-join优化执行代码分析》

《MySQL·源码分析·子查询优化源码分析》

《Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions》

原文链接

本文为阿里云原创内容,未经允许不得转载。

庖丁解牛-图解MySQL 8.0优化器查询转换篇的更多相关文章

  1. MySQL · 特性分析 · 优化器 MRR & BKA【转】

    MySQL · 特性分析 · 优化器 MRR & BKA 上一篇文章咱们对 ICP 进行了一次全面的分析,本篇文章小编继续为大家分析优化器的另外两个选项: MRR & batched_ ...

  2. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  3. 【MySQL】MySQL/MariaDB的优化器对in子查询的处理

    参考:http://codingstandards.iteye.com/blog/1344833 上面参考文章中<高性能MySQL>第四章第四节在第三版中我对应章节是第六章第五节 最近分析 ...

  4. 知识点整理-mysql怎么查看优化器优化后的sql

    背景 1.新建两张表 CREATE TABLE t1 (m1 )); CREATE TABLE t2 (m2 )); 2.插入些数据 INSERT INTO t1 VALUES(, , , 'c'); ...

  5. mysql 索引与优化like查询

    索引与优化like查询 1. like %keyword    索引失效,使用全表扫描.但可以通过翻转函数+like前模糊查询+建立翻转函数索引=走翻转函数索引,不走全表扫描. 2. like key ...

  6. MySQL源码 优化器

    完成了sql的解析过程后,开始进入优化器: 调用的流程分为:     mysql_select:           JOIN::prepare:           JOIN::optimize: ...

  7. MySQL:数据库优化,看这篇就够了

    数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷. 1. 优化一览 ...

  8. MySQL 使用JOIN优化子查询

    1.数据准备 mysql> select * from student; +----+--------+----------+---------+-------------+ | id | na ...

  9. mysql数据库的优化和查询效率的优化

    一.数据库的优化 1.优化索引.SQL 语句.分析慢查询: 2.设计表的时候严格根据数据库的设计范式来设计数据库: 3.使用缓存,把经常访问到的数据而且不需要经常变化的数据放在缓存中,能节约磁盘IO: ...

  10. python相关软件安装流程图解——MySQL 8.0.13安装教程(windows 64位)——MYSQL依赖的软件——MYSQL必须的系统DLL插件——MYSQL真正的安装

    https://www.mysql.com/https://www.mysql.com/downloads/https://dev.mysql.com/downloads/windows/https: ...

随机推荐

  1. FTP的配置和管理

    实验环境: 两台windows servers 一台已经配置了FTP服务器,IP为192.168.1.220,vmnet1 一台作为客户端测试,IP为192.168.1.138,vmnet1 一:FT ...

  2. Vue3.0 所采用的 Composition Api 与 Vue2.x 使用的 Options Api 有什么不同?

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 开始之前 Composition API 可以说是Vue3的最大特点,那么为什么要推出Composition Api,解决了什么问题? 通 ...

  3. Python 基于 xlsxwriter 实现百万数据导出 excel

    追加导出 + 自动切换 sheet ️ excel 中的每个 sheet 最多只能保存 1048576 行数据 # 获取项目的根路径 rootPath curPath = os.path.abspat ...

  4. 算法学习笔记【8】| 单调队列优化DP

    单调队列:就是滑动窗口,可以求出定长 RMQ,时间复杂度线性. 优化 DP 首先把dp方程写成这个样子: 或者其他运算f[i]=max(或者其他运算){f[j]+calc(i,j)}<scrip ...

  5. scala入门输出helloworld

    1 object HelloScala{ 2 def main(args : Array[String]){ 3 println("hello scala") 4 } 5 } He ...

  6. #树状数组,线段树,离散#JZOJ 3854 分组

    题目 Bsny所在的精灵社区有\(n\)个居民,每个居民有一定的地位和年龄,\(r_i\)表示第\(i\)个人的地位,\(a_i\)表示第\(i\)个人的年龄. 最近社区里要举行活动,要求几个人分成一 ...

  7. Websphere更新应用文件

    说明: 由于war包中存在安全漏洞或者需要变更里面的某个jar包,此处列举了两种更新方法,不需要重启服务器,只需重启应用. Websphere对部署好的应用更新jar包方法如下:   方式一.手动替换 ...

  8. 一图读懂DCI版权服务

    访问华为开发者联盟官网 获取开发指导文档 华为移动服务开源仓库地址:GitHub.Gitee 关注我们,第一时间了解 HMS Core 最新技术资讯~

  9. loguru 简单使用

    使用Python自带的 logging 来记录日志会比较麻烦,查了下 大家都在用 loguru,看了下文档,发现是挺好用的,记录下笔记 安装 pip install loguru     简单使用 f ...

  10. 异步、多线程、Java爬取某网站图片

    一.网页图片爬取类 package com.yhyl.utils; import org.jsoup.Jsoup; import org.jsoup.nodes.Document; import or ...