强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解
1.核心词汇
深度确定性策略梯度(deep deterministic policy gradient,DDPG):在连续控制领域经典的强化学习算法,是深度Q网络在处定性”表示其输出的是一个确定的动作,可以用于连续动作环境;“策略梯度”代表的是它用到的是策略网络,并且每步都会更新一次,其是一个单步更新的策略网络。其与深度Q网络都有目标网络和经验回放的技巧,在经验回放部分是一致的,在目标网络的更新上有些许不同。
2.常见问题汇总
2.1 请解释随机性策略和确定性策略,两者有什么区别?
(1)对于随机性策略 $\pi_\theta(a_t|s_t)$ ,我们输入某一个状态 $s$,采取某一个动作 $a$ 的可能性并不是百分之百的,而是有一个概率的,就好像抽奖一样,根据概率随机抽取一个动作。
(2)对于确定性策略 $\mu_{\theta}(s_t)$ ,其没有概率的影响。当神经网络的参数固定之后,输入同样的状态,必然输出同样的动作,这就是确定性策略。
2.2 对于连续动作的控制空间和离散动作的控制空间,如果我们都采取策略网络,应该分别如何操作?
首先需要说明的是,对于连续动作的控制空间,Q学习、深度Q网络等算法是没有办法处理的,所以我们需要使用神经网络进行处理,因为其可以既输出概率值,也可以输出确定的策略 $\mu_{\theta}(s_t)$ 。
(1)要输出离散动作,最后输出的激活函数使用 Softmax 即可。其可以保证输出的是动作概率,而且所有的动作概率加和为1。
(2)要输出连续的动作,可以在输出层中加一层tanh激活函数,其可以把输出限制到 $[-1,1]$ 。我们得到这个输出后,就可以根据实际动作的一个范围再做缩放,然后将其输出给环境。比如神经网络输出一个浮点数2.8,经过tanh激活函数之后,它就可以被限制在 $[-1,1]$ ,输出0.99。假设小车的速度的动作范围是 $[-2,2]$ ,那我们就按比例将之从 $[-1,1]$ 扩大到 $[-2,2]$ ,0.99乘2,最终输出的就是1.98,将其作为小车的速度或者推小车的力输出给环境。
3.面试必知必答
3.1 友善的面试官:请简述一下深度确定性策略梯度算法。
深度确定性策略梯度算法使用演员-评论员结构,但是输出的不是动作的概率,而是具体动作,其可以用于连续动作的预测。优化的目的是将深度Q网络扩展到连续的动作空间。另外,其含义如其名:
(1)深度是因为用了深度神经网络;
(2)确定性表示其输出的是一个确定的动作,可以用于连续动作的环境;
(3)策略梯度代表的是它用到的是策略网络。强化算法每个回合就会更新一次网络,但是深度确定性策略梯度算法每个步骤都会更新一次策略网络,它是一个单步更新的策略网络。
3.2 友善的面试官:请问深度确定性策略梯度算法是同策略算法还是异策略算法?请说明具体原因并分析。
异策略算法。(1)深度确定性策略梯度算法是优化的深度Q网络,其使用了经验回放,所以为异策略算法。(2)因为深度确定性策略梯度算法为了保证一定的探索,对输出动作加了一定的噪声,行为策略不再是优化的策略。
3.3友善的面试官:你是否了解过分布的分布式深度确定性策略梯度算法(distributed distributional deep deterministic policy gradient,D4PG)呢?请描述一下吧。
分布的分布式深度确定性策略梯度算法(distributed distributional deep deterministic policy gradient,D4PG),相对于深度确定性策略梯度算法,其优化部分如下。
(1)分布式评论员:不再只估计Q值的期望值,而是估计期望Q值的分布,即将期望Q值作为一个随机变量来估计。
(2)$N$步累计回报:计算时序差分误差时,D4PG计算的是$N$步的时序差分目标值而不仅仅只有一步,这样就可以考虑未来更多步骤的回报。
(3)多个分布式并行演员:D4PG使用$K$个独立的演员并行收集训练数据并存储到同一个回放缓冲区中。
(4)优先经验回放(prioritized experience replay,PER):使用一个非均匀概率从回放缓冲区中进行数据采样。
更多优质内容请关注公号:汀丶人工智能
强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解的更多相关文章
- [ 学习路线 ] 2015 前端(JS)工程师必知必会 (2)
http://segmentfault.com/a/1190000002678515?utm_source=Weibo&utm_medium=shareLink&utm_campaig ...
- 迈向高阶:优秀Android程序员必知必会的网络基础
1.前言 网络通信一直是Android项目里比较重要的一个模块,Android开源项目上出现过很多优秀的网络框架,从一开始只是一些对HttpClient和HttpUrlConnection简易封装使用 ...
- .NET零基础入门09:SQL必知必会
一:前言 仿佛到了更进一步的时候了,每一个程序员迟早都会遇到数据存储的问题.我们拿什么来存储程序产生的数据?举例来说,用什么来存储我们的打老鼠游戏每次的成绩呢?选择如下: 1:内存中.缺点,退出游戏, ...
- 第3节:Java基础 - 必知必会(上)
第3节:Java基础 - 必知必会(上) 本篇是基础篇的第一小节,我们从最基础的java知识点开始学习.本节涉及的知识点包括面向对象的三大特征:封装,继承和多态,并且对常见且容易混淆的重要概念覆盖和重 ...
- 【SQL必知必会笔记(1)】数据库基础、SQL、MySQL8.0.16下数据库、表的创建及数据插入
文章目录 1.数据库基础 1.1 数据库(database) 1.2 表(table) 1.3 列和数据类型 1.4 行 1.5 主键 2.什么是SQL 3.创建后续练习所需数据库.表(MySQL8. ...
- 【MySQL 基础】MySQL必知必会
MySQL必知必会 简介 <MySQL必知必会>的学习笔记和总结. 书籍链接 了解SQL 数据库基础 什么是数据库 数据库(database):保存有组织的数据的容器(通常是一个文 件或一 ...
- 《SQL必知必会》学习笔记整理
简介 本笔记目前已包含 <SQL必知必会>中的所有章节. 我在整理笔记时所考虑的是:在笔记记完后,当我需要查找某个知识点时,不需要到书中去找,只需查看笔记即可找到相关知识点.因此在整理笔记 ...
- 《SQL必知必会》学习笔记二)
<SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...
- 学习《SQL必知必会(第4版)》中文PDF+英文PDF+代码++福达BenForta(作者)
不管是数据分析还是Web程序开发,都会接触到数据库,SQL语法简洁,使用方式灵活,功能强大,已经成为当今程序员不可或缺的技能. 推荐学习<SQL必知必会(第4版)>,内容丰富,文字简洁明快 ...
- 第5节:Java基础 - 必知必会(下)
第5节:Java基础 - 必知必会(下) 本小节是Java基础篇章的第三小节,主要讲述Java中的Exception与Error,JIT编译器以及值传递与引用传递的知识点. 一.Java中的Excep ...
随机推荐
- 如何利用CCXT交易数字货币合约
更多精彩内容,欢迎关注公众号:数量技术宅,也可添加技术宅个人微信号:sljsz01,与我交流. 对于币圈量化老司机来说,相信或多或少都有接触过ccxt这个接口,ccxt为我们提供了多交易所统一的标准格 ...
- STM32CubeMX教程16 DAC - 输出3.3V内任意电压
1.准备材料 开发板(正点原子stm32f407探索者开发板V2.4) STM32CubeMX软件(Version 6.10.0) keil µVision5 IDE(MDK-Arm) ST-LINK ...
- 一个NASA、Google都在用的开源CMS:wagtail
说起开源CMS,你会想到哪些呢?WordPress?DoraCMS?joomla? 今天再给大家推荐一个非常好用的开源CMS:Wagtail 如果您正在选型的话,可以了解一下Wagtail的特点: 基 ...
- vivo 应用商店推荐系统探索与实践
介绍 vivo 应用商店推荐系统如何高效支撑个性化的推荐需求. 一.前言 商店的应用数据主要来源于运营排期.CPD.游戏.算法等渠道,成立推荐项目之后也没有变化,发生变化的是由推荐系统负责和数据源进行 ...
- Java内部类详解--成员内部类,局部内部类,匿名内部类,静态内部类
一.内部类基础 在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类.广泛意义上的内部类一般来说包括这四种:成员内部类.局部内部类.匿名内部类和静态内部类.下面就先来了解一 ...
- 消息服务 + Serverless 函数计算如何助力企业降本提效?
作者 | 柳下 背景介绍 消息队列服务(下文均以 Message Service 命名)作为云计算 PaaS 领域的基础设施之一,其高并发.削峰填谷的特性愈发受到开发者关注.Message Servi ...
- 基于阿里云 Serverless 快速部署 function 的极致体验
1.Serverless 前世今生 1.1 Serverless 背景介绍 云计算的不断发展,涌现出很多改变传统IT架构和运维方式的新技术,而以虚拟机.容器.微服务为代表的技术更是在各个层面不断提升云 ...
- sipp3.6带媒体测试方案
概述 SIP压测工具sipp,免费,开源,功能足够强大,配置灵活,优点多. 本文档介绍sipp工具如何带媒体测试,并介绍如何制作可用的媒体文件(G729和PCMA). 环境 centos7.9 fre ...
- OpenStack 工作流组件: Mistral
1 Mistral 简介 Mistral 是由 Mirantis 开发,贡献给 OpenStack 社区的工作流组件,它提供 Workflow As a Service 服务. 在计算机中通常处理的任 ...
- ElasticSearch 通过 Kibana 与 ElasticSearch-head 完成增删改查
本文为博主原创,未经允许不得转载: 1. 安装并配置 elasticSearch ,kibana, elasticsearch-head docker 安装 ElasticSearch 和 Kiba ...