#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int maxn = + ;
int a[maxn];
LL sum[maxn]; int main(){
std::ios::sync_with_stdio(false);
int n, k;
cin >> n >> k;
memset(sum, , sizeof(sum));
for (int i = ; i <= n; i++){
cin >> a[i];
sum[i] = sum[i - ] + a[i];
}
bool ok = false;
for (int i = ; i <= n; i++){ //可能只是自己,所以从0开始
for (int j = i; j <= n; j++){
if (sum[j] - sum[i] == k){
cout << i+ << " " << j << endl; //因为从0开始,所以i需要加1
ok = true;
break;
}
}
if (ok)
break;
}
if (!ok)
cout << "No Solution" << endl;
//system("pause");
return ;
}

51Nod 1094 和为k的连续区间的更多相关文章

  1. 51nod 1094 和为k的连续区间【前缀和/区间差/map】

    1094 和为k的连续区间 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 一整数数列a1, a2, ... , an(有正有负),以及另一个整数k ...

  2. 51Nod 1094 和为k的连续区间 | 水

    Input示例 6 10 1 2 3 4 5 6 Output示例 1 4 #include "cstdio" #include "algorithm" #in ...

  3. 1094 和为k的连续区间(暴力)

    基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 一整数数列a1, a2, ... , an(有正有负),以及另一个整数k,求一个区间[i, j],(1 ...

  4. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  5. 51Nod 和为k的连续区间

    一整数数列a1, a2, ... , an(有正有负),以及另一个整数k,求一个区间[i, j],(1 <= i <= j <= n),使得a[i] + ... + a[j] = k ...

  6. 51nod 1105(第K大数 二分套二分)

    题目链接:http://www.51nod.com/onlineJudge/submitDetail.html#!judgeId=620811 参考自:https://blog.csdn.net/f_ ...

  7. 51Nod——T 1686 第K大区间

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 ...

  8. 51nod 区间中第K大的数

    区间中第K大的数 基准时间限制:1 秒 空间限制:131072 KB  一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,第K大的数是多少. 例如: 1 7 6 ...

  9. 【51nod 1685】 第K大区间2

    题目描述: 定义一个长度为奇数的区间的值为其所包含的的元素的中位数.现给出n个数,求将所有长度为奇数的区间的值排序后,第K大的值为多少. 样例解释: [l,r]表示区间的值 [1]:3 [2]:1 [ ...

随机推荐

  1. tomcat 实现域名crm.test.com訪问

    **tomcat 上下文.实现的效果.是在浏览器输入ip或者域名能直接訪问.不用输入项目project名字 正常初始化都是http://10.243.12.34:8080/plcrm.要变成 crm. ...

  2. 设计模式学习笔记——Observer观察者模式

    观察者模式里面有两个东西:观察者(Observer)和目标(Subject).当目标发生变化的时候,观察者随之起舞,也作出相应的变化.此为观察者模式. 这是怎么做到的?主要是目标里面存有一份观察者的名 ...

  3. SpringInAction4笔记——装配

    重点:常用的上下文环境 AnnotationConfigApplicationContext ClassPathXmlApplicationContext FileSystemXmlApplicati ...

  4. debian apt-get工作的原理

    1 apt-get update apt-get update并没有将远程仓库的包都下载到本地,而是通过访问远程仓库创建或者更新了远程仓库的本地索引,索引文件放在/var/lib/apt/lists目 ...

  5. org.apache.flume.EventDeliveryException: NettyAvroRpcClient { host: hadoop1, port: 41414 }: Failed to send event

    org.apache.flume.EventDeliveryException: NettyAvroRpcClient { host: hadoop1, port: 41414 }: Failed t ...

  6. Zookeeper原理和应用

    ZooKeeper基本原理 数据模型 如上图所示,ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode.每个ZNode都可以通过其路径唯一标识, ...

  7. 附录: mysql show processlist中的State的意义

    附录: mysql show processlist中的State的意义 Checking table 正在检查数据表(这是自动的). Closing tables 正在将表中修改的数据刷新到磁盘中, ...

  8. (linux)块设备驱动程序

      1.4.1  Linux块设备驱动程序原理(1) 顾名思义,块设备驱动程序就是支持以块的方式进行读写的设备.块设备和字符设备最大的区别在于读写数据的基本单元不同.块设备读写数据的基本单元为块,例如 ...

  9. bzoj4406: [Wc2016]论战捆竹竿&&uoj#172. 【WC2016】论战捆竹竿

    第二次在bzoj跑进前十竟然是因为在UOJ卡常致死 首先这个题其实就是一个无限背包 一般做法是同余最短路,就是bzoj2118: 墨墨的等式可以拿到30分的好成绩 背包是个卷积就分治FFT优化那么下面 ...

  10. tload

    tload命令以图形化的方式输出当前系统的平均负载到指定的终端.假设不给予终端机编号,则会在执行tload指令的终端机显示负载情形. 语法 tload(选项)(参数) 选项 -s:指定闲时的刻度: - ...