源码阅读之HashMap(JDK8)
概述
HashMap根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。
内部结构
在jdk8中,HashMap处理“碰撞”增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8个),采用红黑树(特点是查询时间是O(logn))存储(有一个阀值控制,大于阀值(8个),将链表存储转换成红黑树存储)
数据结构
1. 位桶数组
transient Node<K,V>[] table;
2.数组元素Node<K,V>实现了Entry接口
//Node是单向链表,它实现了Map.Entry接口
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;//用来定位数组索引位置
final K key;
V value;
Node<K,V> next; // 下一个节点 //构造函数Hash值 键 值 下一个节点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
//每一个节点的hash值,是将key的hashCode 和 value的hashCode 亦或得到的。
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
3. 红黑树
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父节点
TreeNode<K,V> left; //左子树
TreeNode<K,V> right; //右子树
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; //颜色属性
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
} /**
* Returns root of tree containing this node.
* 返回当前节点的根节点
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
// 一层一层往上找
if ((p = r.parent) == null)
return r;
r = p;
}
}
源码阅读
1. 基本元素
//默认初始容量为16,这里这个数组的容量必须为2的n次幂。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量为2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//以Node<K,V>为元素的数组,长度是2的N次方,或者初始化时为0.
transient Node<K,V>[] table;
// 链表->红黑树阀值
static final int TREEIFY_THRESHOLD = 8;
// 红黑树->链表阀值
static final int UNTREEIFY_THRESHOLD = 6;
// 红黑树树化的最小表容量,最好>4*TREEIFY_THRESHOLD
static final int MIN_TREEIFY_CAPACITY = 64;
//已经储存的Node<key,value>的数量,包括数组中的和链表中的
transient int size;
//扩容的临界值,或者所能容纳的key-value对的极限。当size>threshold的时候就会扩容
int threshold;
//加载因子,用于计算哈希表元素数量的阈值。 threshold = 哈希桶.length * loadFactor;
final float loadFactor;
2.构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity); //新的扩容临界值
} public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
} public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//根据期望容量cap,返回2的n次方形式的 哈希桶的实际容量 length。 返回值一般会>=cap
static final int tableSizeFor(int cap) {
//经过下面的 或 和位移 运算, n最终各位都是1。
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
//判断n是否越界,返回 2的n次方作为 table(哈希桶)的阈值
return (n < 0) ? 1 : (n >= 1 << 30) ? 1 << 30 : n + 1;
}
这个方法就是算>=cap,且是2的倍数的最小值,例如
确定哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。
// 第一步
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
} //第二步
(n - 1) & hash
这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
通过(n - 1) & hash来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,(n - 1) & hash运算等价于对n取模,也就是h%n,但是&比%具有更高的效率。
添加元素
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
1 public V put(K key, V value) {
2 // 对key的hashCode()做hash
3 return putVal(hash(key), key, value, false, true);
4 }
5
6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
7 boolean evict) {
8 Node<K,V>[] tab; Node<K,V> p; int n, i;
9 // 步骤①:tab为空则创建
10 if ((tab = table) == null || (n = tab.length) == 0)
11 n = (tab = resize()).length;
12 // 步骤②:计算index,并对null做处理
13 if ((p = tab[i = (n - 1) & hash]) == null)
14 tab[i] = newNode(hash, key, value, null);
15 else {
16 Node<K,V> e; K k;
17 // 步骤③:节点key存在,直接覆盖value
18 if (p.hash == hash &&
19 ((k = p.key) == key || (key != null && key.equals(k))))
20 e = p;
21 // 步骤④:判断该链为红黑树
22 else if (p instanceof TreeNode)
23 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24 // 步骤⑤:该链为链表
25 else {
26 for (int binCount = 0; ; ++binCount) {
27 if ((e = p.next) == null) {
28 p.next = newNode(hash, key,value,null);
//链表长度大于8转换为红黑树进行处理
29 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
30 treeifyBin(tab, hash);
31 break;
32 }
// key已经存在直接覆盖value
33 if (e.hash == hash &&
34 ((k = e.key) == key || (key != null && key.equals(k))))
break;
36 p = e;
37 }
38 }
39 //如果e不是null,说明有需要覆盖的节点,
40 if (e != null) { // existing mapping for key
41 V oldValue = e.value;
42 if (!onlyIfAbsent || oldValue == null)
43 e.value = value;
44 afterNodeAccess(e);
45 return oldValue;
46 }
47 } 48 ++modCount;
49 // 步骤⑥:超过最大容量 就扩容
50 if (++size > threshold)
51 resize();
52 afterNodeInsertion(evict);
53 return null;
54 }
扩容机制
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。通过扩容也可以有效的解决碰撞问题。
final Node<K,V>[] resize() {
//oldTab 为当前表的哈希桶
Node<K,V>[] oldTab = table;
//当前哈希桶的容量 length
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前的阈值
int oldThr = threshold;
//初始化新的容量和阈值为0
int newCap, newThr = 0;
//如果当前容量大于0
if (oldCap > 0) {
//如果当前容量已经到达上限
if (oldCap >= MAXIMUM_CAPACITY) {
//则设置阈值是2的31次方-1
threshold = Integer.MAX_VALUE;
//同时返回当前的哈希桶,不再扩容
return oldTab;
}//否则新的容量为旧的容量的两倍。
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//如果旧的容量大于等于默认初始容量16
//那么新的阈值也等于旧的阈值的两倍
newThr = oldThr << 1; // double threshold
}//如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;//那么新表的容量就等于旧的阈值
else {}//如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况 // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//此时新表的容量为默认的容量 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新的阈值为默认容量16 * 默认加载因子0.75f = 12
}
if (newThr == 0) {//如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况
float ft = (float)newCap * loadFactor;//根据新表容量 和 加载因子 求出新的阈值
//进行越界修复
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更新阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据新的容量 构建新的哈希桶
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//更新哈希桶引用
table = newTab;
//如果以前的哈希桶中有元素
//下面开始将当前哈希桶中的所有节点转移到新的哈希桶中
if (oldTab != null) {
//遍历老的哈希桶
for (int j = 0; j < oldCap; ++j) {
//取出当前的节点 e
Node<K,V> e;
//如果当前桶中有元素,则将链表赋值给e
if ((e = oldTab[j]) != null) {
//将原哈希桶置空以便GC
oldTab[j] = null;
//如果当前链表中就一个元素,(没有发生哈希碰撞)
if (e.next == null)
//直接将这个元素放置在新的哈希桶里。
//注意这里取下标 是用 哈希值 与 桶的长度-1 。 由于桶的长度是2的n次方,这么做其实是等于 一个模运算。但是效率更高
newTab[e.hash & (newCap - 1)] = e;
//如果发生过哈希碰撞 ,而且是节点数超过8个,转化成了红黑树(暂且不谈 避免过于复杂, 后续专门研究一下红黑树)
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果发生过哈希碰撞,节点数小于8个。则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。
else { // preserve order
//因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量
//低位链表的头结点、尾节点
Node<K,V> loHead = null, loTail = null;
//高位链表的头节点、尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;//临时节点 存放e的下一个节点
do {
next = e.next;
//这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位
if ((e.hash & oldCap) == 0) {
//给头尾节点指针赋值
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}//高位也是相同的逻辑
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}//循环直到链表结束
} while ((e = next) != null);
//将低位链表存放在原index处,
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//将高位链表存放在新index处
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
查询元素
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
} final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 找到hash对应的位置,也就是数组中的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个Node是不是要找的Node
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 检查first后面的node
if ((e = first.next) != null) {
if (first instanceof TreeNode) // 查询红黑树
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 遍历后面的链表,找到key值和hash值都相同的Node
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
源码阅读之HashMap(JDK8)的更多相关文章
- Java集合源码阅读之HashMap
基于jdk1.8的HashMap源码分析. 引用于:http://blog.stormma.me/2017/05/31/Java%E9%9B%86%E5%90%88%E6%BA%90%E7%A0%81 ...
- jdk源码阅读笔记-HashMap
文章出处:[noblogs-it技术博客网站]的博客:jdk1.8源码分析 在Java语言中使用的最多的数据结构大概右两种,第一种是数组,比如Array,ArrayList,第二种链表,比如Array ...
- JDK 1.8源码阅读 HashMap
一,前言 HashMap实现了Map的接口,而Map的类型是成对出现的.每个元素由键与值两部分组成,通过键可以找对所对应的值.Map中的集合不能包含重复的键,值可以重复:每个键只能对应一个值. 存储数 ...
- 【JDK1.8】JDK1.8集合源码阅读——HashMap
一.前言 笔者之前看过一篇关于jdk1.8的HashMap源码分析,作者对里面的解读很到位,将代码里关键的地方都说了一遍,值得推荐.笔者也会顺着他的顺序来阅读一遍,除了基础的方法外,添加了其他补充内容 ...
- HashMap源码阅读笔记
HashMap源码阅读笔记 本文在此博客的内容上进行了部分修改,旨在加深笔者对HashMap的理解,暂不讨论红黑树相关逻辑 概述 HashMap作为经常使用到的类,大多时候都是只知道大概原理,比如 ...
- HashMap源码阅读
HashMap是Map家族中使用频度最高的一个,下文主要结合源码来讲解HashMap的工作原理. 1. 数据结构 HashMap的数据结构主要由数组+链表+红黑树(JDK1.8后新增)组成,如下图所示 ...
- 源码阅读之LinkedList(JDK8)
inkedList概述 LinkedList是List和Deque接口的双向链表的实现.实现了所有可选列表操作,并允许包括null值. LinkedList既然是通过双向链表去实现的,那么它可以被当作 ...
- 源码阅读之ArrayList(JDK8)
ArrayList概述 ArrayList是一个的可变数组的实现,实现了所有可选列表操作,并允许包括 null 在内的所有元素.每个ArrayList实例都有一个容量,该容量是指用来存储列表元素的数组 ...
- Java 源码刨析 - HashMap 底层实现原理是什么?JDK8 做了哪些优化?
[基本结构] 在 JDK 1.7 中 HashMap 是以数组加链表的形式组成的: JDK 1.8 之后新增了红黑树的组成结构,当链表大于 8 并且容量大于 64 时,链表结构会转换成红黑树结构,它的 ...
随机推荐
- 593. Valid Square
Problem statement: Given the coordinates of four points in 2D space, return whether the four points ...
- hdu 5044 树链剖分
转载:http://blog.csdn.net/qinzhenhua100/article/details/39716851 二种操作,一种更新结点值,一种更新路径值,最后输出更改后的结点值和路径值. ...
- SpringBoot Data JPA 关联表查询的方法
SpringBoot Data JPA实现 一对多.多对一关联表查询 开发环境 IDEA 2017.1 Java1.8 SpringBoot 2.0 MySQL 5.X 功能需求 通过关联关系查询商店 ...
- POJ 1182_食物链
题意: 三种动物A,B,C,A吃B,B吃C,C吃A, 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同类. 第二种说法是" ...
- codevs——1742 爬楼梯
1742 爬楼梯 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 小明家外面有一个长长的楼梯,共N阶.小明的 ...
- Java并发包——线程通信
Java并发包——线程通信 摘要:本文主要学习了Java并发包里有关线程通信的一些知识. 部分内容来自以下博客: https://www.cnblogs.com/skywang12345/p/3496 ...
- 洛谷 P1404 平均数
P1404 平均数 题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n ...
- vue 重要的东西
- Centos7 samba 匿名共享 简单config
安装Samba yum install samba samba-client samba-common -y 备份原始的Samba配置文件: mv /etc/samba/smb.conf /etc/s ...
- hdu 4291 矩阵幂 循环节
http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109 ...