题目:

Farm Tour
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16898   Accepted: 6543

Description

When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.

To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.

He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

Input

* Line 1: Two space-separated integers: N and M.

* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.

Output

A single line containing the length of the shortest tour. 

Sample Input

4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2

Sample Output

6

Source

方法:

题目相当于是从 1 到 N 找两条不相交的路径并使得总长度最小。由于每条边不能重复经过,所以我们将每条边容量视为 1,费用为边的长度,新建源点 s 向 1 连一条容量 2 费用0 的边,新建汇点 t,N 向 t 连一条容量为 2 费用为 0 的边,则题目就转化为求从 s 到 t 的最小费用最大流问题。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<queue>
using namespace std;
const int N=;
const int M=;
const int inf=0x3f3f3f3f;
queue<int> que;
int n,m,ans=;
int first[],next[],go[],rest[],cost[],dis[],tot=;
bool visit[],work[];
int src,des;
void combin(int u,int v,int r,int w)
{
next[++tot]=first[u],first[u]=tot,go[tot]=v,rest[tot]=r,cost[tot]=w;
next[++tot]=first[v],first[v]=tot,go[tot]=u,rest[tot]=,cost[tot]=-w;
}
void init(int n,int m)
{
src=,des=n+;
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
combin(u,v,,w);
combin(v,u,,w);
}
combin(src,,,);
combin(n,des,,);
}
bool spfa()
{
memset(dis,inf,sizeof(dis));
memset(work,false,sizeof(work));
int u;
que.push(src),dis[src]=;
while(!que.empty())
{
u=que.front(),que.pop();
visit[u]=false;
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(rest[e]&&dis[u]+cost[e]<dis[v])
{
dis[v]=dis[u]+cost[e];
if(!visit[v])
{
que.push(v);
visit[v]=true;
}
}
}
}
return dis[des]<inf;
}
int dinic(int u,int flow)
{
if(u==des)
{
ans+=flow*dis[des];
return flow;
}
work[u]=true;
int res=,temp,v,e;
for(e=first[u];e;e=next[e])
{
if(!work[v=go[e]]&&rest[e]&&dis[v]==dis[u]+cost[e])
{
temp=dinic(v,min(rest[e],flow-res));
if(temp)
{
rest[e]-=temp,rest[e^]+=temp;
res+=temp;
if(res==flow) break;
}
}
}
return res;
}
int maxflow()
{
while(spfa()) dinic(src,inf);
return ans;
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
init(n,m);
cout<<maxflow()<<endl;
return ;
}

算法复习——费用流模板(poj2135)的更多相关文章

  1. 二分图带权匹配 KM算法与费用流模型建立

    [二分图带权匹配与最佳匹配] 什么是二分图的带权匹配?二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小.而二分图的最佳匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大 ...

  2. HDU2686 费用流 模板

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. HDU 6611 K Subsequence(Dijkstra优化费用流 模板)题解

    题意: 有\(n\)个数\(a_1\cdots a_n\),现要你给出\(k\)个不相交的非降子序列,使得和最大. 思路: 费用流建图,每个点拆点,费用为\(-a[i]\),然后和源点连边,和后面非降 ...

  4. 初识费用流 模板(spfa+slf优化) 餐巾计划问题

    今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...

  5. hdu1533 费用流模板

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. BZOJ3291Alice与能源计划——匈牙利算法+模拟费用流

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验.为 了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

  7. 费用流模板(带权二分图匹配)——hdu1533

    /* 带权二分图匹配 用费用流求,增加源点s 和 汇点t */ #include<bits/stdc++.h> using namespace std; #define maxn 1000 ...

  8. [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)

    1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 802  Solved: 344[Submit][Sta ...

  9. BZOJ2557[Poi2011]Programming Contest——匈牙利算法+模拟费用流

    题目描述 Bartie and his friends compete in the Team Programming Contest. There are n contestants on each ...

随机推荐

  1. 指定ip地址登陆服务器

    [root@localhost ~]# cat /etc/hosts.allow ## hosts.allow   This file contains access rules which are ...

  2. bzip2命令

    bzip2命令——压缩文件 命令所在路径:/usr/bin/bzip2 示例1: # bzip2 yum.log 压缩当前目录下yum.log文件成yum.log.bz2 示例2: # bzip2 - ...

  3. html与css入门经典视频教程 千锋说要这样学

    PHP初学者看过来,老师带来的PHP入门经典视频教程,带你轻松入门,学习PHP就是这么简单. 很多人不理解为什么学习PHP要先学习HTML基础和CSS,其实PHP作为服务器的脚本语言,在开发过程中用于 ...

  4. PyTorch在NLP任务中使用预训练词向量

    在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用ge ...

  5. mysql存储引擎中InnoDB与Myisam的区别及应用场景

    1. 区别: (1)事务处理: MyISAM是非事务安全型的,而InnoDB是事务安全型的(支持事务处理等高级处理): (2)锁机制不同: MyISAM是表级锁,而InnoDB是行级锁: (3)sel ...

  6. js的正则表达式总结

    1.8-20位数字 or  字母 or 特殊字符 var reg = /^[0-9a-zA-Z!@#$%^&*()_+-/.]{8,20}$/; 2.8-20位 数字+字母+特殊字符 //正则 ...

  7. c语言文件打开模式

    (转载) 在C语言的文件操作语法中,打开文件文件有以下12种模式,如下图: 打开模式  只可以读   只可以写  读写兼备 文本模式 r w a r+ w+ a+ 二进制模式 rb wb ab  rb ...

  8. [LUOGU] 3959 宝藏

    https://www.luogu.org/problemnew/show/P3959 注意到n非常小,考虑状压/搜索. 发现状压需要枚举起点,跑n次,一个问题是转移不可以以数字大小为阶段了,考虑用d ...

  9. html中footer如何一直保持在页底

    最近在开发博客过程中,遇到有些body的height是比window的height要低的,然后就出现了footer在页面中间的尴尬样子.那么这种情况怎么解决呢: 首先,写一个footer标签: < ...

  10. 【Git版本控制】Git使用教程

    1.Git的综述 SVN是集中式版本控制系统,版本库集中放在中央服务器上,而干活时用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活,干完后,需要把自己做完的活推送到中央服务器.集 ...