传送门

注释写明了一切

#include <cstdio>
#define N 111
#define p 9999973
#define LL long long int n, m;
LL ans, f[N][N][N]; //每一行和每一列可以放0/1/2个炮
//f[i][j][k]表示前i行放了1个炮的列有j个,放了2个炮的列有k个的方案数
//那么可以推出,放了0个炮的列有m-j-k个 inline int C(int x)
{
return x * (x - 1) / 2;
} int main()
{
int i, j, k, l;
scanf("%d %d", &n, &m);
f[0][0][0] = 1;
for(i = 1; i <= n; i++)
for(j = 0; j <= m; j++)
for(k = 0; k <= m - j; k++)
{
//当前这一行不放炮
f[i][j][k] += f[i - 1][j][k]; //当前这一行就放一个炮
//放到没有炮的列
if(j) f[i][j][k] += (m - k - j + 1) * f[i - 1][j - 1][k];
//放到有炮的列
if(k) f[i][j][k] += (j + 1) * f[i - 1][j + 1][k - 1]; //当前这一行放两个炮
//放到两个没有炮的列
if(j >= 2) f[i][j][k] += C(m - k - j + 2) * f[i - 1][j - 2][k];
//放到两个有炮的列
if(k >= 2) f[i][j][k] += C(j + 2) * f[i - 1][j + 2][k - 2];
//放到一个有炮的列,一个没有炮的列
if(j && k) f[i][j][k] += j * (m - j - k + 1) * f[i - 1][j][k - 1]; f[i][j][k] %= p;
}
for(i = 0; i <= m; i++)
for(j = 0; j <= m - i; j++)
ans = (ans + f[n][i][j]) % p;
printf("%lld\n", ans);
return 0;
}

  

[luoguP2051] [AHOI2009]中国象棋(DP)的更多相关文章

  1. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  2. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

  3. P2051 [AHOI2009]中国象棋——DP(我是谁,我在哪,为什么)

    象棋,给你棋盘大小,然后放炮(炮的数量不限),不能让炮打到其他的炮,问方案数: 数据n,m<=200; 状态压缩似乎能做,但是我不会: 因为只要状态数,所以不必纠结每种状态的具体情况: 可以想出 ...

  4. Luogu 2051[AHOI2009]中国象棋 - DP

    Description 在 $n * m$ 的格子上放若干个炮, 使得每个炮都不能攻击到其他炮 Solution 定义数组f[ i ][ j ][ k ] 表示到了第 i 行, 已经有2个炮的列数为 ...

  5. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  6. [AHOI2009]中国象棋 DP,递推,组合数

    DP,递推,组合数 其实相当于就是一个递推推式子,然后要用到一点组合数的知识 一道很妙的题,因为不能互相攻击,所以任意行列不能有超过两个炮 首先令f[i][j][k]代表前i行,有j列为一个炮,有k列 ...

  7. 洛谷.2051.[AHOI2009]中国象棋(DP)

    题目链接 /* 每行每列不能超过2个棋子,求方案数 前面行对后面行的影响只有 放了0个.1个.2个 棋子的列数,与排列方式无关 所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子 ...

  8. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  9. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

随机推荐

  1. 88E1111

    千兆网phy芯片 支持GMII,RGMII,MII等接口 具备4个GMII时钟模式 支持自适应功能 超低功耗模式 功率降低模式 MDC/MDIO/TWSI接口 支持10Mb/s,100Mb/s,100 ...

  2. Selenium私房菜系列6 -- 深入了解Selenium RC工作原理(1)

    前一篇已经比较详细讲述了如何使用Selenium RC进行Web测试,但到底Selenium RC是什么?或者它由哪几部分组成呢?? 一.Selenium RC的组成: 关于这个问题,我拿了官网上的一 ...

  3. c++的const和static区别

    const定义的常量在超出其作用域之后其空间会被释放,而static定义的静态常量在函数执行后不会释放其存储空间. static表示的是静态的.类的静态成员函数.静态成员变量是和类相关的,而不是和类的 ...

  4. Redis性能优化之redis.cnf配置参数

    redis调优总结 1.相应的参数调优 加内存2.redis使用结构调优3.使用合理的数据类型说明:redis存储的数据为redis hash(字符映射表) 单key多字段结构. 1)调整配置文件中配 ...

  5. Tensorflow_入门学习_1

    1.0 TensorFlow graphs Tensorflow是基于graph based computation: 如: a=(b+c)∗(c+2) 可分解为 d=b+c e=c+2 a=d∗e ...

  6. IOS修改系统音量

    #import <IOKit/IOKitLib.h> #import <IOKit/hidsystem/IOHIDLib.h> #import <IOKit/hidsys ...

  7. win10搭建Java环境

    一.下载地址    jdk和jre官方网址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 根据你的系统选择你需要 ...

  8. caffe修改需要的东西 6:40

    https://blog.csdn.net/zhaishengfu/article/details/51971768?locationNum=3&fps=1

  9. 在64位的linux中运行32位的应用程序

    常规做法,先添加32bit架构: sudo dpkg --add-architecture i386 sudo apt-get update sudo apt-get install libc6:i3 ...

  10. ios之UIPickView

    以下为控制器代码,主要用到的是UIPickerView 主要步骤:新建一个Single View Application 然后,如上图所示,拖进去一个UILabel Title设置为导航,再拖进去一个 ...