Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
/*
莫队算法的经典题目,并借此简述一下对该算法的理解。
莫队算法是一个离线算法,如果某个区间(x,y)的信息可以用O(1)的时间转移,莫队算法便可上场。
我们将序列分为√n块,将操作按照x所在的块为第一关键字,y为第二关键字进行排序,这样可以
保证相邻两个操作之间的转移是O(√n)的,如果不是√n,那么说明这个块以后不会询问到了,所以
可以保证均摊时间复杂度。 下面看这个题目。
我们设区间(x,y)中的各种颜色数目为a,b,c...,由C(x,2)=x*(x-1)/2可知,最后的答案为:
(a*(a-1)+b*(b-1)+c*(c-1)+...)/((y-x+1)*(y-x))
=>(a*a+b*b+c*c...-(y-x+1))/((y-x+1)*(y-x))
观察上式可知我们只需维护所有颜色数目的平方就可以了,可以做到O(1)转移。
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100010
#define lon long long
using namespace std;
int col[N],bl[N],n,m;
lon num[N],ans,up[N],down[N];
struct node{int l,r,id;}a[N];
bool cmp(const node&s1,const node&s2){
if(bl[s1.l]==bl[s2.l]) return s1.r<s2.r;
return bl[s1.l]<bl[s2.l];
}
void init(int x,int d){
ans-=num[col[x]]*num[col[x]];
num[col[x]]+=(lon)d;
ans+=num[col[x]]*num[col[x]];
}
lon gcd(lon aa,lon bb){
if(!bb) return aa;
return gcd(bb,aa%bb);
}
int main(){
scanf("%d%d",&n,&m);
int len=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&col[i]);
bl[i]=(i-)/len+;
}
for(int i=;i<=m;i++){
scanf("%d%d",&a[i].l,&a[i].r);
a[i].id=i;
}
sort(a+,a+m+,cmp);
int pl=,pr=;
for(int i=;i<=m;i++){
int id=a[i].id;
if(a[i].l==a[i].r){
up[id]=;down[id]=;continue;
}
if(a[i].l>pl){
for(int j=pl;j<a[i].l;j++)
init(j,-);
}
else {
for(int j=a[i].l;j<pl;j++)
init(j,);
}
pl=a[i].l;
if(a[i].r>pr){
for(int j=pr+;j<=a[i].r;j++)
init(j,);
}
else {
for(int j=a[i].r+;j<=pr;j++)
init(j,-);
}
pr=a[i].r;
lon aa=ans-(lon)(a[i].r-a[i].l+);
lon bb=(lon)(a[i].r-a[i].l+)*(lon)(a[i].r-a[i].l);
lon cc=gcd(aa,bb);
up[id]=aa/cc;down[id]=bb/cc;
}
for(int i=;i<=m;i++)
printf("%lld/%lld\n",up[i],down[i]);
return ;
}

小Z的袜子(bzoj 2038)的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  4. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  5. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  9. bzoj 2038 小Z的袜子(hose)(莫队算法)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 11542  Solved: 5166[Sub ...

  10. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法

    这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...

随机推荐

  1. Cayley凯莱定理——一一对应

    定理 过$n$个有标志顶点的树的数目等于$n^{n-2}$. 此定理说明用$n-1$条边将$n$个已知的顶点连接起来的连通图的个数是$n^{n-1}$.也可以这样理解,将n个城市连接起来的树状网络有$ ...

  2. python之文件读写操作(r/r+/rb/w/w+/wb/a/a+/ab)的作用

    'r':只读.该文件必须已存在. 'r+':可读可写.该文件必须已存在,写为追加在文件内容末尾. 'rb':表示以二进制方式读取文件.该文件必须已存在. 'w':只写.打开即默认创建一个新文件,如果文 ...

  3. Zynq UltraScale+ MPSoC 多媒体应用

    消费者渴望更高的视频质量,推动了视频技术的发展.MPSoC 基于 Zynq-7000SoC ,包括一个可编程逻辑 (PL) 的桥接处理系统 (PS),但它在 Zynq UltraScale+ MPSo ...

  4. mac系统下android studio创建手机模拟器

    打开android studio,点击右上角的模拟器图标,打开“Android Virtual Device Manager” 窗口,如下图   点击“Create Virtual Device”,在 ...

  5. Lucene入门基础教程

    http://www.linuxidc.com/Linux/2014-06/102856.htm

  6. non-JRMP server at remote endpoint

    #在相应的domain的domain.xml文件添加下面红色设置,并重启domain <admin-service system-jmx-connector-name="system& ...

  7. mac系统快捷键大全详细介绍(全部)

    对于使用苹果电脑的操作系统的新人来说,快捷键是个很麻烦的问题,要一个个的找到快捷键也不是很容易的问题,今天这篇文章就解决了到处找快捷键的麻烦. 第一种分类:启用快捷键 按下按键或组合键,直到所需的功能 ...

  8. 【Git版本控制】Git使用教程

    1.Git的综述 SVN是集中式版本控制系统,版本库集中放在中央服务器上,而干活时用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活,干完后,需要把自己做完的活推送到中央服务器.集 ...

  9. IntelliJ IDEA 中自定义模板代码的缩写

    方法一:新建 Live Template step1. 点击 File – Setting step2.选择 Live Template,点击右侧的+号,选择 Template Group step3 ...

  10. Java开发工具下载

    一.Tomcat下载: http://tomcat.apache.org/ 二.Maven下载: http://maven.apache.org/download.cgi 三.eclipse下载: h ...