[bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge
题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$。记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方案数。
注释:$1\le n,val_i\le 2\cdot 10^3$。
想法:只需要用取模瞎**容斥一下就行了。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
int a[N],f[N],g[N];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int main()
{
// freopen("thing.in","r",stdin);
// freopen("thing.out","w",stdout);
int n=rd(),m=rd(); for(int i=1;i<=n;i++) a[i]=rd();
f[0]=1;
for(int i=1;i<=n;i++)
{
for(int j=m;j>=a[i];j--) (f[j]+=f[j-a[i]])%=10;
}
for(int i=1;i<=n;i++)
{
memset(g,0,sizeof g);
g[0]=1;
for(int j=1;j<=m;j++)
{
printf("%d",((f[j]-g[j%a[i]])%10+10)%10);
g[j%a[i]]=((f[j]-g[j%a[i]])%10+10)%10;
}
puts("");
}
// fclose(stdin); fclose(stdout);
return 0;
}
小结:好题。
[bzoj2287][poj Challenge]消失之物_背包dp_容斥原理的更多相关文章
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- luogu p4141 消失之物(背包dp+容斥原理)
题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很 ...
- bzoj2287【POJ Challenge】消失之物(退背包)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 657 Solved: 382[Submit][S ...
- [bzoj2287]消失之物 题解(背包dp)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1138 Solved: 654[Submit][ ...
随机推荐
- poj3685 Matrix
思路: 二分套二分. 矩阵在每一列上是严格递增的,可以利用这一点进行二分. 实现: #include <cstdio> #include <cmath> #include &l ...
- python 使用 Pyscript 调试 报错
UnicodeEncodeError: 'ascii' codec can't encode characters in position 13-16: ordinal not in range(12 ...
- 提交应用 Windows Phone的应用程序认证要求
本文介绍了 Windows Phone 应用程序或游戏要通过认证并在 Windows Phone Marketplace 中发布而必须满足的策略和技术要求. 1.0 计划概述 设计认证过程的一个核心原 ...
- 掌握Spark机器学习库-09.3-kmeans算法实现分类
数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.hust.hml.examplesforml import org.apache.s ...
- [转]Git分支管理策略
如果你严肃对待编程,就必定会使用"版本管理系统"(Version Control System). 眼下最流行的"版本管理系统",非Git莫属. 相比同类软件, ...
- [转载]iTOP-4418开发板Ubuntu系统烧写方法分享
本文转自迅为论坛:http://topeetboard.com 开发平台:iTOP-4418开发板系统:Ubuntu 1. TF卡读写速度测试烧写 Ubuntu 对于 TF 卡的要求比较高,很多老旧的 ...
- 前复权是从今天的价格倒推 后复权是从上市价格前推 不复权就是原始K线。
前复权是从今天的价格倒推 后复权是从上市价格前推 不复权就是原始K线.
- Android网站
http://blog.csdn.net/airsaid/article/details/52902299 android调用传感器的代码 http://blog.csdn.net/huangbiao ...
- 【计算机网络】3.2 无连接运输:UDP
第三章第二节 无连接运输:UDP UDP(用户数据报协议,User Datagram Protocol),它只是做了运输层协议能够做的最少工作,除了多路复用和多路分解及一些差错检测外,它几乎没有做任何 ...
- idea关闭,tomcat却没关闭的设置方法
最近,遇到个事,我在打开tomcat时,关闭了idea,再次打开时,运行tomcat时,发现端口占用,查看任务管理器,发现,tomcat没有随idea的关闭而关闭. 后来,想想,可能是,在关闭时,点了 ...