logistic 回归

1.问题:

在上面讨论回归问题时。讨论的结果都是连续类型。但假设要求做分类呢?即讨论结果为离散型的值。

2.解答:

  • 假设:

    当中:

    g(z)的图形例如以下:



    由此可知:当hθ(x)<0.5时我们能够觉得为0,反之为1,这样就变成离散型的数据了。

  • 推导迭代式:

    • 利用概率论进行推导,找出样本服从的分布类型,利用最大似然法求出对应的θ
    • 因此:

  • 结果:

  • 注意:这里的迭代式增量迭代法

Newton迭代法:

1.问题:

上述迭代法,收敛速度非常慢,在利用最大似然法求解的时候能够运用Newton迭代法,即θ := θ−f(θ)f′(θ)

2.解答:

  • 推导:

    • Newton迭代法是求θ,且f(θ)=0。刚好:l′(θ)=0
    • 所以能够将Newton迭代法改写成:
  • 定义:

    • 当中:l′(θ) =


    • 因此:H矩阵就是l′′(θ),即H−1 = 1/l′′(θ)
    • 所以:
  • 应用:

    • 特征值比較少的情况,否则H−1的计算量是非常大的

Logistic 0、1分类:

1.自己设定迭代次数

  自己编写对应的循环,给出迭代次数以及下降坡度alpha,进行增量梯度下降。

主要函数及功能:

  • Logistic_Regression 相当于主函数
  • gradientDecent 梯度下降更新θ函数
  • computeCost 计算损失J函数

Logistic_Regression


%% part0: 准备
data = load('ex2data1.txt');
x = data(:,[1,2]);
y = data(:,3);
pos = find(y==1);
neg = find(y==0); x1 = x(:,1);
x2 = x(:,2);
plot(x(pos,1),x(pos,2),'r*',x(neg,1),x(neg,2),'co');
pause; %% part1: GradientDecent and compute cost of J
[m,n] = size(x);
x = [ones(m,1),x];
theta = zeros(3,1);
J = computeCost(x,y,theta); theta = gradientDecent(x, y, theta);
X = 25:100;
Y = ( -theta(1,1) - theta(3,1)*X)/theta(2,1);
plot(x(pos,2),x(pos,3),'r*',x(neg,2),x(neg,3),'co', X, Y, 'b');
pause;

gradientDecent

function theta = gradientDecent(x, y, theta)

%% compute GradientDecent 更新theta,利用的是增量梯度下降
m = size(x,1);
alph = 0.001;
for iter = 1:150000
for j = 1:3
dec = 0;
for i = 1:m
dec = dec + (y(i) - sigmoid(x(i,:)*theta))*x(i,j);
end
theta(j,1) = theta(j,1) + dec*alph/m;
end
end
end

sigmoid

function g = sigmoid(z)

%% SIGMOID Compute sigmoid functoon

g = 1/(1+exp(-z));

end

computeCost

function J = computeCost(x, y, theta)

%% compute cost: J

m = size(x,1);
J = 0;
for i = 1:m
J = J + y(i)*log(sigmoid(x(i,:)*theta)) + (1 - y(i))*log(1 - sigmoid(x(i,:)*theta));
end
J = (-1/m)*J;
end

结果例如以下:

2. 利用fminunc函数:

  给出损失J的计算方式和θ的计算方式。然后调用fminunc函数计算出最优解

主要函数及功能:

  • Logistics_Regression 相当于主函数
  • computeCost给出J和θ的计算方式
  • sigmoid函数

Logistics_Regression


%% part0: 准备
data = load('ex2data1.txt');
x = data(:,[1,2]);
y = data(:,3);
pos = find(y==1);
neg = find(y==0); x1 = x(:,1);
x2 = x(:,2);
plot(x(pos,1),x(pos,2),'r*',x(neg,1),x(neg,2),'co');
pause; %% part1: GradientDecent and compute cost of J
[m,n] = size(x);
x = [ones(m,1),x];
theta = zeros(3,1);
options = optimset('GradObj', 'on', 'MaxIter', 400); % Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(computeCost(x,y,t)), theta, options);
X = 25:100;
Y = ( -theta(1,1) - theta(3,1)*X)/theta(2,1);
plot(x(pos,2),x(pos,3),'r*',x(neg,2),x(neg,3),'co', X, Y, 'b');
pause;

sigmoid

function g = sigmoid(z)

%% SIGMOID Compute sigmoid functoon

g = zeros(size(z));
g = 1.0 ./ (1.0 + exp(-z)); end

computeCost

function [J,grad] = computeCost(x, y, theta)

%% compute cost: J

m = size(x,1);
grad = zeros(size(theta));
hx = sigmoid(x * theta);
J = (1.0/m) * sum(-y .* log(hx) - (1.0 - y) .* log(1.0 - hx));
grad = (1.0/m) .* x' * (hx - y);
end

结果

Logistic multi_class

1.条件

  • 自己做的数据:
1,5,1
1,6,1
1.5,3.5,1
2.5,3.5,1
2,6,1
3,7,1
4,6,1
3.5,4.5,1
2,4,1
2,5,1
4,4,1
5,5,1
6,4,1
5,3,1
4,2,1
4,3,2
5,3,2
5,2,2
5,1.5,2
7,1.5,2
5,2.5,2
6,2.5,2
5.5,2.5,2
5,1,2
6,2,2
6,3,2
5,4,2
7,5,2
7,2,2
8,1,2
8,3,2
7,4,3
7,5,3
8.5,5.5,3
9,4,3
8,5.5,3
8,4.5,3
9.5,5.5,3
8,4.5,3
8.5,4.5,3
7,6,3
6,5,3
9,5,3
9,6,3
8,6,3
8,7,3
10,6,3
10,4,3
  • 数据离散图:

2.算法推到

  • 花费J :

  • 更新θ:

  • 算法思路(这个算法也叫one_vs_all):

    假设样本分成K类,。那我们训练K组θ,依次考虑每一类样本,然后把其他的全部样本当做一类样本,这样就把这类样本和其他分开了。我们把考虑的那类样本的y值改为1,其他为0。这样就得到K组θ值。

3.代码实现:

这里採用fminuc函数实现

1.函数级功能简单介绍:

  • Logistic_Regression : 相当于主函数
  • oneVsAll: 写成一个循环,依次计算出K组θ。利用fminunc调用计算函数
  • computeCost:当中主要写J&θ更新函数

2.代码:

  • Logistic_Regerssion:

%% part0: 准备
data = load('data.txt');
x = data(:,[1,2]);
y = data(:,3);
y1 = find(y==1);
y2 = find(y==2);
y3 = find(y==3); plot(x(y1,1),x(y1,2),'r*',x(y2,1),x(y2,2),'c+',x(y3,1),x(y3,2),'bo');
pause; %% part1: GradientDecent and compute cost of J
[m,n] = size(x);
x = [ones(m,1),x];
theta = zeros(3,3); % Run fminunc to obtain the optimal theta
% This function will return theta and the cost [thetas,cost]= one_vs_all(x,y,theta);
X = 1:10;
Y1 = -(thetas(1,1) + thetas(2,1)*X)/thetas(3,1);
Y2 = -(thetas(1,2) + thetas(2,2)*X)/thetas(3,2);
Y3 = -(thetas(1,3) + thetas(2,3)*X)/thetas(3,3);
plot(x(y1,2),x(y1,3),'r*',x(y2,2),x(y2,3),'c+',x(y3,2),x(y3,3),'bo');
hold on
plot(X,Y1,'r',X,Y2,'g',X,Y3,'c');
  • one_vs_all:
function [theta,cost] = one_vs_all(x, y, theta)

%% compute cost: J

options = optimset('GradObj', 'on', 'MaxIter', 400);
n = size(x,2);
cost = zeros(n,1);
num_labels = 3;
for i = 1:num_labels
L = logical(y==i);
[theta(:,i), cost(i,1)] = ...
fminunc(@(t)(computeCost(x,L,t)), theta(:,i), options);
end
  • computeCost:
function [J,grad] = computeCost(x, y, thetas)

%% compute cost: J

m = size(x,1);
grad = zeros(size(thetas));
hx = sigmoid(x * thetas);
J = (1.0/m) * sum(-y .* log(hx) - (1 - y) .* log(1 - hx));
grad = (1.0/m) .* x' * (hx - y);
end

3.效果:

  • θ & J cost:

thetas = 6.3988 5.1407 -24.4266
-2.0773 0.2173 2.1641
0.9857 -1.9490 2.2038 >> cost cost = 0.1715
0.2876
0.1031
  • 图形显示:

  • 注意三条线组成的三角形。。这个地方的点不属于不论什么类别。

补充:

1.regularized Logistic Regerssion

  • regularized 和 普通的Logistics没有太大的差别,仅仅是在J的计算和θ更新中加上了曾经的结果。

2.one_vs_all:

1.简单介绍:

  • 事实上one_vs_all另一种算法,把θ当做单隐层前馈神经网络进行计算。比方说我们有K类样本,第一类样本我们能够看成[1,0,0,0...]共k个数,,然后依次。,第i个为1则代表第i类样本。计算方式和上面multi_class一样。

  • 前馈神经网络模型例如以下:

2.代码:

  • 函数介绍:

    • one_vs_all:相当于主函数。
    • IrCostFunction:花费J和θ更新
    • myPredict:统计训练误差
  • 数据 和 训练得到的θ:

    点击这儿下载

  • 训练结果:


Local minimum found. Optimization completed because the size of the gradient is less than
the default value of the function tolerance. <stopping criteria details> Local minimum found. Optimization completed because the size of the gradient is less than
the default value of the function tolerance. <stopping criteria details> Training Set Accuracy: 100.000000
  • one_vs_all:
function [all_theta,cost] = oneVsAll(X, y, num_labels)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i % Some useful variables m = size(X, 1);
n = size(X, 2); % You need to return the following variables correctly
all_theta = zeros(n+1,num_labels); % Add ones to the X data matrix
X = [ones(m, 1),X]; % ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
% cost = zeros(num_labels,1);
options = optimset('GradObj', 'on', 'MaxIter', 50);
for i =1:num_labels
L = logical(y==i);
[all_theta(:,i),cost(i,1)] = ...
fminunc (@(t)(lrCostFunction(t, X, L)),all_theta(:,i), options);
end myPredict(all_theta,X,y); % ========================================================================= end
  • IrCostFunction:
function [J,grad] = lrCostFunction(thetas,x, y)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples %单独调试该函数时用的代码
%x = [ones(m,1),x];
%theta = zeros(size(x,2),1);
%y = logical(y==1); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
% grad = zeros(size(thetas));
hx = sigmoid(x * thetas);
J = (1.0/m) * sum(-y .* log(hx) - (1 - y) .* log(1 - hx));
grad = (1.0/m) .* x' * (hx - y);
% ================================================x============= end
  • myPredict:
function p = myPredict(Theta1,X,y)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2) % Useful values
m = size(X, 1);
num_labels = 10; % You need to return the following variables correctly
p = zeros(size(X, 1), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
% z_2 = X*Theta1;
a_2 = sigmoid(z_2);
for i = 1:m
for j = 1:num_labels
if a_2(i,j) >= 0.5
p(i,1) = j;
break;
end
end
end
fprintf('\nTraining Set Accuracy: %f\n', mean(double(p == y)) * 100); % ========================================================================= end

与本博客相关知识链接:

Classification and logistic regression的更多相关文章

  1. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  2. Classification week2: logistic regression classifier 笔记

    华盛顿大学 machine learning: Classification 笔记. linear classifier 线性分类器 多项式: Logistic regression & 概率 ...

  3. 分类和逻辑回归(Classification and logistic regression)

    分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例 ...

  4. 机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

    形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更 ...

  5. Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...

  6. 机器学习技法:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  7. 机器学习技法笔记:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. logistic regression model

    logistic regression model LR softmax classification Fly logistic regression model loss fuction softm ...

随机推荐

  1. Python9-字典-day5

    数据类型划分:可变数据类型,不可变数据类型不可变数据类型:元祖 bool int str 可哈希可变数据类型:list,dic set 不可哈希dict key 必须是不可变数据类型,可哈希 valu ...

  2. java中ArrayList、LinkedList、Vector的区别

    ArrayList.LinkedList.Vector这三个类都实现了List接口. ArrayList是一个可以处理变长数组的类型,可以存放任意类型的对象.ArrayList的所有方法都是默认在单一 ...

  3. pandas中Timestamp类用法讲解

    由于网上关于Timestamp类的资料比较少,而且官网上面介绍的很模糊,本文只是对如何创建Timestamp类对象进行简要介绍,详情请读者自行查阅文档. 以下有两种方式可以创建一个Timestamp对 ...

  4. Head First HTML5 Programming笔记--chapter2 介绍Javascript和DOM

    你已经了解了HTML标记(也称为结构),而且知道了CSS样式(也称为表示),剩下的就是Javascript(也称为行为). JavaScript的工作方式 1. 编写 你创建HTML标记和JavaSc ...

  5. C++类设计1(Class without pointer members)

    class complex{ public: complex (double r = 0, double i = 0):re(r), im(i){} //inline complex& ope ...

  6. nw.js学习地址

    http://blog.sina.com.cn/s/blog_600e56a60102vqj2.html https://github.com/nwjs/nw.js/wiki/Manifest-For ...

  7. P2341 受欢迎的牛

    受欢迎的牛 洛谷链接 题目大意: 有n头牛,牛会喜欢其他牛和自己,而喜欢是可以传递的,求被所有牛喜欢的牛的数量. 思路: 这是一道tarjan缩点的题目.被所有牛都喜欢的牛,一定会在一个强连通分量里. ...

  8. ffmpeg常见名词解析

    scan_all_pmts, 扫描全部的ts流的"Program Map Table"表.

  9. .netCore例子

    .netCore例子 文章:https://github.com/dotnet-architecture/eShopOnContainers

  10. POJ——1364King(差分约束SPFA判负环+前向星)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11946   Accepted: 4365 Description ...