bzoj2194
http://www.lydsy.com/JudgeOnline/problem.php?id=2194
卷积。。。
卷积并不高深,其实卷积就是两个多项式相乘的系数,但是得满足一点条件,就是f[n]=a[i]*b[n-i],就是下标和固定。。。然后这道题下标和不固定,但是我们把b反过来,就是一个卷积了。每次和是固定的
但是输出的时候得输出从n-2n,因为c[n+k]=a[i]*b[n+k-i],n<=n+k<=2*n
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
const int N = ;
complex<double> a[N], b[N];
int n, m, l;
int r[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i <= n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> w(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j <= n; j += p)
{
complex<double> t(, );
for(int k = ; k < i; ++k, t = t * w)
{
complex<double> x = a[j + k], y = t * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d", &n); --n;
for(int i = ; i <= n; ++i)
{
int x, y; scanf("%d%d", &x, &y); a[i] = x; b[n - i] = y;
}
m = * n; for(n = ; n <= m; n <<= ) ++l;
for(int i = ; i <= n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (l - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = m / ; i <= m; ++i) printf("%d\n", (int)(a[i].real() / n + 0.5));
return ;
}
bzoj2194的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- 【BZOJ2194】快速傅立叶之二
[BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- bzoj2194 快速傅里叶之二
题意:对于k = 0 ... n求 解: 首先把i变成从0开始 我们发现a和b的次数(下标)是成正比例的,这不可,于是反转就行了. 反转b的话,会发现次数和是n + k,这不可. 反转a就很吼了. 这 ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- 【bzoj2194】快速傅立叶之二 FFT
题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
随机推荐
- 在MONO Design中使用Flex3D
在项目开发组的努力下,HTML5 3D 的开发包变得越来越优秀,越来越健壮:基于HTML5 3D技术的MONO Design建模平台功能也变得越来越强大和完善,这个方便了很多使用我们HTML5 3D的 ...
- Mybatis中collection和association的使用区别
1. 关联-association2. 集合-collection 比如同时有User.java和Card.java两个类 User.java如下: public class User{ privat ...
- .NET-高并发及限流方案
前言:高并发对我们来说应该都不陌生,特别想淘宝秒杀,竞价等等,使用的非常多,如何在高并发的情况下,使用限流,保证业务的进行呢.以下是一个实例,不喜勿喷! 总体思路: 1. 用一个环形来代表通过的请求 ...
- sql 生成某个范围内的随机数
从i-j的范围内的随机数,那么公式为FLOOR(i+RAND()*(j-i+1))
- 【Codeforces 411A】Password Check
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 傻逼模拟题 [代码] import java.io.*; import java.util.*; public class Main { st ...
- App后台开发运维和架构实践学习总结(3)——RestFul架构下API接口设计注意点
1. 争取相容性和统一性 这里就要求让API设计得是可预测的.按照这种方式写出所有接口和接口所需要的参数.现在就要确保命名是一致的,接口所需的参数顺序也是一致的.你现在应该有products,orde ...
- codevs2370 小机房的树
题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...
- Hackerrank manasa-and-combinatorics(数学推导)
题意:有n个字符A,2n个字符B,问你能用这3n个字母组成多少种字符串,使得组成的字符串所有前缀与后缀的B的数目都大于等于A的数目,对答案mod 99991 分析:类似卡特兰数 ans=总方案数-存在 ...
- Java使用JNA调用DLL库
Java调用DLL方法有三种,JNI.JNA.JNative, 本文为JNA JNA为使用jna.jar包,下载地址:http://www.java2s.com/Code/Jar/j/Download ...
- Spring Boot配置文件规则以及使用方法官方文档查找以及Spring项目的官方文档查找方法
比如要使用Spring Boot实现一个功能,最直接的方式是Google,但是往往搜索出来的都比较乱,关键是乱在不同的版本上,比如1.x版本和2.x版本的配置是不一样的.最明显区别是在使用Thymel ...