【Poj2960】S-Nim & 博弈论
Position:
List
Description
- 大意:有n堆石子,每堆石子个数已知,两人轮流从中取石子,每次可取的石子数x满足x属于集合S(k) = {s1,s2,s3…sk-1},问先拿者是否有必胜策略?
- 普通Nim取石子游戏但加了一些限制条件,比如每次只能取S={s1,s2,s3……},就把前驱的条件改一下就行。
Knowledge
Sprague-Grundy Function-SG函数–博弈论
博弈论也是最近新学的知识,上面是一个写得很好的博客。
简单脑补:对于公平博弈(一般是NIM游戏),我们有一个重要的工具————就是SG函数。
SG函数的定义:
必败态的sg值为0,其余态的sg值为其后继状态的sg值的mex和。
其中mex和操作(mex{a1,a2,a3,…,ar})的含义是a1,a2,a3,…,ar中最小的没出现过的自然数。
而对于组合游戏(就是由若干个子游戏组合而成,每个子游戏之间状态独立,每次操作任选一个子游戏操作),其sg值为所有子游戏sg值的异或和。如果一个状态求得sg值为0,则为必败态,否则为必胜态。(证明略,大致是因为先手总能通过一步使sg不为0的状态变为0,而sg为0的状态只能变成sg不为0的状态,最后不能操作的状态sg也为0)而一般sg都是打表找规律,常用分析方法:(1) 等差分析(2) 等比分析(3) 特定数值位置分析(4) 奇偶位置分析。对于多组数据都不同就要暴力求,如本题。
Solution
分析:
1.可将问题转化为n个子问题,每个子问题分别为:
从一堆x颗石子中取石子,每次可取的石子数为集合S(k)中的一个数
2.分析(1)中的每个子问题,易得:SG(x)=mex(SG[(x-s[i]>0)])(k>=i>=1)
3.后面就是SG函数的应用,根据Sprague-Grundy Therem:g(G)=g(G1)^g(G2)^g(G3)^…^g(Gn)即游戏的和的SG函数值是它的所有子游戏的SG函数值的异或,即SG(G) = SG(x1)^SG(x2)^…^SG(xn),故若SG(G)=0那么必输。
Notice
memset:①比for快②#include - cstring
map复杂度加一个log,对于加入的数少的情况用,else flag数组。
Code
// <S-Nim.cpp> - 08/03/16 20:18:06
// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <map>
#include <cstdlib>
#include <cmath>
#define MOD 1000000007
#define INF 1e9
#define EPS 1e-10
using namespace std;
typedef long long LL;
const int MAXN=;
const int MAXM=;
inline int max(int &x,int &y) {return x>y?x:y;}
inline int min(int &x,int &y) {return x<y?x:y;}
inline int getint() {
register int w=,q=;register char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-')q=,ch=getchar();
while(ch>=''&&ch<='')w=w*+ch-'',ch=getchar();
return q?-w:w;
}
int n,T,sg[MAXN],m,ans,s[MAXN];
inline int mex(int x){
//map<int,bool>f;
bool f[MAXN];
memset(f,,sizeof(f));//fast <cstring>
int temp;
for(int i=;i<=n;i++){
temp=x-s[i];
if(temp>=){
if(sg[temp]==-)sg[temp]=mex(temp);
f[sg[temp]]=;
}
}
for(int i=;;i++)if(!f[i])return i;
}
inline int SG(int x){
if(sg[x]==-)sg[x]=mex(x);
return sg[x];
}
int main()
{
freopen("S-Nim.in","r",stdin);
freopen("S-Nim.out","w",stdout);
while(n=getint(),n){
for(int i=;i<=n;i++)s[i]=getint();
sg[]=;
for(int i=;i<MAXN;i++)sg[i]=-;
T=getint();
while(T--){
m=getint();ans=;
while(m--)ans^=SG(getint());
if(ans)printf("W");else printf("L");
}
printf("\n");
}
return ;
}
【Poj2960】S-Nim & 博弈论的更多相关文章
- (转载)Nim博弈论
最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- POJ2960 S-Nim 【博弈论】
Description Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
- zoj 3591 Nim 博弈论
思路:先生成序列再求异或,最多的可能为n*(n+1)/2: 在去掉其中必败的序列,也就是a[i]=a[j]之间的序列. 代码如下: #include<iostream> #include& ...
- poj 2068 Nim 博弈论
思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...
- poj 2975 Nim 博弈论
令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- 【BZOJ】4147: [AMPPZ2014]Euclidean Nim
[算法]博弈论+数论 [题意]给定n个石子,两人轮流操作,规则如下: 轮到先手操作时:若石子数<p添加p个石子,否则拿走p的倍数个石子.记为属性p. 轮到后手操作时:若石子数<q添加q个石 ...
随机推荐
- 机器学习_K近邻Python代码详解
k近邻优点:精度高.对异常值不敏感.无数据输入假定:k近邻缺点:计算复杂度高.空间复杂度高 import numpy as npimport operatorfrom os import listdi ...
- cstring 转string
(1)CString转换为string CString cs(_T("cs")); string s; s = (LPCSTR)(CStringA)(cs); (2)string转 ...
- "ping: unknown host www.baidu.com"问题解决方式
参考:https://blog.csdn.net/wbainngg123/article/details/51540535 在虚拟机VMware里选择桥接模式,并配置网络之后,发现ping ip地址可 ...
- Manjaro安装配置美化字体模糊发虚解决记录
Manjaro安装记录 前言: 记录自己Manjaro18安装的一些坑,避免下次满互联网找解决方法.在此之前试过Manjaro.Ubuntu.Fedora.linux Mint系统的pac.yum ...
- gson序列化后整形变浮点问题解决方案
字段值是json格式的字符串.我需要将这个字段反序列化为List<Map>形式,但是在反序列化后,id变为了1.0. 百度了很多然并卵,最后改用了阿里的fastjson,没问题.(jack ...
- JAVA基础——is-a 、have-a、和 like-a的区别
1.is-a,has-a,like-a是什么 在面向对象设计的领域里,有若干种设计思路,主要有如下三种: is-a.has-a.like-a java中在类.接口.抽象类中有很多体现. 了解java看 ...
- P4817 [USACO15DEC]Fruit Feast 水果盛宴
P4817 [USACO15DEC]Fruit Feast 水果盛宴 现在Bessie的饱食度为 00 ,她每吃一个橙子,饱食度就会增加 AA :每吃一个柠檬,饱食度就会增加 BB .Bessie还有 ...
- Python学习-字符串的基本知识
字符串的基本知识 根据所展示形式的不同,字符串也可以分为两类 原始字符串: 使用单引号包括:‘liuwen’ 使用双引号包括:"liuwen" 使用3个单引号包括 :'''liuw ...
- nyoj 108 士兵杀敌(一)
士兵杀敌(一) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军现在 ...
- nyoj 93 汉诺塔(三)(stack)
汉诺塔(三) 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度 ...