题目描述

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

输入输出格式

输入格式:

第1行:N, M (0<=N<=100, 0<=M<=500)

第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )

第3行:V1, V2, ..., Vi, ..., Vn (0<=Vi<=1000 )

第4行:D1, D2, ..., Di, ..., Dn (0<=Di<=N, Di≠i )

输出格式:

一个整数,代表最大价值

输入输出样例

输入样例#1:

3 10
5 5 6
2 3 4
0 1 1
输出样例#1:

5

Tarjan缩点+树形dp

屠龙宝刀点击就送

#include <ctype.h>
#include <cstdio>
#define N 605 void read(int &x)
{
x=;bool f=;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
x=f?(~x)+:x;
}
struct node
{
int next,to;
}edge[N<<];
struct node2
{
int next,to;
}edge2[N<<];
struct thing
{
int v,w;
}th[N];
bool in[N],instack[N];
int head2[N],cnt2,f[N][N],w[N],v[N],stack[N],top,n,m,head[N],cnt,sumcol,col[N],dfn[N],low[N],tim;
void add(int u,int v)
{
edge[++cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt;
}
int min(int a,int b){return a>b?b:a;}
int max(int a,int b){return a>b?a:b;}
void tarjan(int x)
{
dfn[x]=low[x]=++tim;
instack[x]=;
stack[++top]=x;
for(int i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if(instack[v]) low[x]=min(low[x],dfn[v]);
if(!dfn[v]) tarjan(v),low[x]=min(low[x],low[v]);
}
if(low[x]==dfn[x])
{
int t;
sumcol++;
do
{
t=stack[top--];
instack[t]=false;
col[t]=sumcol;
th[sumcol].v+=v[t];
th[sumcol].w+=w[t];
}while(t!=x);
}
}
void dp(int x)//此处DP为树上01背包 
{
for(int i=head2[x];i;i=edge2[i].next)
{
dp(edge2[i].to);//延伸的点继续dp
for(int j=m-th[x].w;j>=;j--)
{
for(int k=;k<=j;k++) f[x][j]=max(f[x][j],f[x][k]+f[edge2[i].to][j-k]);
}
}
for(int j=m;j>=;j--)
{
if(j>=th[x].w) f[x][j]=f[x][j-th[x].w]+th[x].v;
else f[x][j]=;
}
}
void add2(int u,int v)
{
edge2[++cnt2].next=head2[u];
edge2[cnt2].to=v;
head2[u]=cnt2;
}
void rebuild()
{
for(int i=;i<=n;i++)
{
for(int j=head[i];j;j=edge[j].next)
{
int v=edge[j].to;
if(col[v]!=col[i])
{
in[col[v]]=;
add2(col[i],col[v]);
}
}
}
}
int main()
{
read(n);read(m);
for(int i=;i<=n;i++) read(w[i]);
for(int i=;i<=n;i++) read(v[i]);
for(int x,i=;i<=n;i++)
{
read(x);
if(x) add(x,i);
}
for(int i=;i<=n;i++) if(!dfn[i]) tarjan(i);
rebuild();
for(int i=;i<=sumcol;i++)
{
if(!in[i])
{
in[i]=;
add2(sumcol+,i);
}
}
dp(sumcol+);
printf("%d",f[sumcol+][m]);
return ;
}

洛谷 P2515 [HAOI2010]软件安装的更多相关文章

  1. 洛谷 P2515 [HAOI2010]软件安装 解题报告

    P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...

  2. 洛谷—— P2515 [HAOI2010]软件安装

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  3. 洛谷——P2515 [HAOI2010]软件安装

    https://www.luogu.org/problem/show?pid=2515#sub 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中 ...

  4. 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)

    题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...

  5. 洛谷P2515 [HAOI2010]软件安装(tarjan缩点+树形dp)

    传送门 我们可以把每一个$d$看做它的父亲,这样这个东西就构成了一个树形结构 问题是他有可能形成环,所以我们还需要一遍tarjan缩点 缩完点后从0向所有入度为零的点连边 然后再跑一下树形dp就行了 ...

  6. luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...

  7. [bzoj2427]P2515 [HAOI2010]软件安装(树上背包)

    tarjan+树上背包 题目描述 现在我们的手头有 \(N\) 个软件,对于一个软件 \(i\),它要占用 \(W_i\) 的磁盘空间,它的价值为 \(V_i\).我们希望从中选择一些软件安装到一台磁 ...

  8. P2515 [HAOI2010]软件安装

    树形背包 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...

  9. luogu P2515 [HAOI2010]软件安装

    传送门 看到唯一的依赖关系,容易想到树型dp,即\(f_{i,j}\)表示选点\(i\)及子树内连通的点,代价为\(j\)的最大价值,然后就是选课那道题 但是要注意 1.题目中的依赖关系不一定是树,可 ...

随机推荐

  1. codeforces 696A A. Lorenzo Von Matterhorn(水题)

    题目链接: A. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. JS DOM1核心概要document

    Document类型: document对象表示整个html页面,而且,document对象是window对象的一个属性: 文档信息:document.title,表示当前页面的标题: documen ...

  3. U3D Navigation

    让我们来一起粗步认识一下NavMesh的简单使用 首先我们建立一个新场景,在新场景我们创建 一个地形或者创建一个Plane, 然后在其上面用Cube或者其它的建立一些障碍物 再创建自己需要为其设置自动 ...

  4. 51Nod 1327 棋盘游戏 —— 延迟DP

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1327 看博客:https://www.cnblogs.com/Na ...

  5. CoreGpaphics

    CoreGpaphics基本应用 CGAffineTransformMake开头的函数 是基于最初始的位置来变化的 带有CGAffineTransform参数是基于CGAffineTransform的 ...

  6. 6-13 Hog特征1

    Hog特征与Haar特征有点不同,Hog特征是直接经过模板计算得到的

  7. 任务48:Identity MVC:Model后端验证

    任务48:Identity MVC:Model后端验证 RegisterViewModel using System; using System.Collections.Generic; using ...

  8. js 将json字符串转换为json对象的方法解析-转

    例如: JSON字符串:var str1 = '{ "name": "cxh", "sex": "man" }'; JS ...

  9. 位运算【C++学习(计蒜客)】

    C++提供了位运算操作符,使程序可以直接对内存进行操作.C++的这个特色大大提高了C++程序的执行能力.例如使用位操作运算可以将一个存储单位中的各个二进制位左移或右移一位,也可以将一个存储单位中所有的 ...

  10. hihoCoder 1032

    最长回文子串的O(1)算法Manacher算法 #include <iostream> #include <stdio.h> #include <string.h> ...