[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=4850

[算法]

首先对不等式进行移项 :

hj <= hi + p - sqrt(|i - j|)

p >= hj - hi + sqrt(|i - j|)

显然 , sqrt(|i - j|)最多只有sqrt(n)个不同的值

用ST表求区间最值 , 然后分块计算即可

时间复杂度: O(Nsqrt(N))

[代码]

#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010
#define MAXLOG 20
#define sqr(x) x * x int n;
int lg[MAXN] , bit[];
long long h[MAXN];
long long value[MAXN][MAXLOG]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline long long query(int l,int r)
{
int k = lg[r - l + ];
return max(value[l][k],value[r - bit[k] + ][k]);
} int main()
{ read(n);
for (register int i = ; i < MAXN; i++) lg[i] = (double)log(i) / log(2.0);
bit[] = ;
for (register int i = ; i <= ; i++) bit[i] = bit[i - ] << ;
for (register int i = ; i <= n; i++) read(h[i]);
for (register int i = ; i <= n; i++) value[i][] = h[i];
for (register int i = ; i < MAXLOG; i++)
{
for (register int j = ; j + ( << i) <= n; j++)
{
value[j][i] = max(value[j][i - ],value[j + bit[i - ]][i - ]);
}
}
for (register int i = ; i <= n; i++)
{
int l = i , r , sq = ;
long long ans = ;
while (l != )
{
r = l - ;
l = max(,i - sqr(sq));
chkmax(ans,sq + query(l,r) - h[i]);
sq++;
}
r = i , sq = ;
while (r != n)
{
l = r + ;
r = min(n,i + sqr(sq));
chkmax(ans,sq + query(l,r) - h[i]);
sq++;
}
printf("%lld\n",ans);
} return ;
}

[JSOI 2016] 灯塔的更多相关文章

  1. JSOI 2016 扭动的字符串

    JSOI 2016 扭动的字符串 题面描述 给出两个长度为\(n\)的字符串\(A,B\) \(S(i,j,k)\)表示把\(A\)中的\([i,j]\)和\(B\)中的\([j,k]\)拼接起来的字 ...

  2. [JSOI 2016] 最佳团体(树形背包+01分数规划)

    4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2003  Solved: 790[Submit][Statu ...

  3. 解题:JSOI 2016 最佳团体

    题面 0/1分数规划+树形背包检查 要求$\frac{\sum P_i}{\sum S_i}的最大值,$按照0/1分数规划的做法,二分一个mid之后把式子化成$\sum P_i=\sum S_i*mi ...

  4. [JSOI 2016] 最佳团体

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4753 [算法] 很明显的分数规划 可以用树形动态规划(树形背包)检验答案 时间复杂度 ...

  5. JSOI 2016 病毒感染 辅助Dp问题

    原题链接:https://www.luogu.com.cn/problem/P5774 分析 直接看这道题,第一个困惑点,那个绝对值的比较是什么东西,根据数学知识,我们可以知道这个意思是k到i的距离小 ...

  6. [bzoj4850][Jsoi2016]灯塔

    来自FallDream的博客,未经允许,请勿转载,谢谢. JSOI的国境线上有N一座连续的山峰,其中第ii座的高度是hi??.为了简单起见,我们认为这N座山峰排成了连续一条 直线.如果在第ii座山峰上 ...

  7. [JSOI2016]灯塔

    Description $JSOI$的国境线上有$N$一座连续的山峰,其中第$i$座的高度是$h_i$​​.为了简单起见,我们认为这$N$座山峰排成了连续一条直线. 如果在第$i$座山峰上建立一座高度 ...

  8. JSOI部分题解

    JSOI部分题解 JSOI2018 战争 问题转化为给定你两个凸包\(\mathbb S,\mathbb T\),每次独立的询问将\(\mathbb T\)中的每个点移动一个向量,问\(\mathbb ...

  9. Be Better:遇见更好的自己-2016年记

    其实并不能找到好的词语来形容过去的一年,感觉就如此平淡的过了!没有了毕业的稚气,看事情淡了,少了一丝浮躁,多了一分认真.2016也许就是那句话-多读书,多看报,少吃零食多睡觉,而我更愿意说--Be B ...

随机推荐

  1. 【转】Delphi 文件拖放

    转自:万一的博客. 原理分析: 这需要用到 ShellAPI 单元的两个函数: DragAcceptFiles.DragQueryFile; 用 DragAcceptFiles(窗口句柄, True) ...

  2. PHP实现微信第三方登录的方法

    本文实例讲述了PHP版微信第三方实现一键登录及获取用户信息的方法.分享给大家供大家参考,具体如下: 注意,要使用微信在第三方网页登录是需要“服务号”才可以哦,所以必须到官方申请 一开始你需要进入微信公 ...

  3. Python之模块和包导入

    Python之模块和包导入 模块导入: 1.创建名称空间,用来存放模块XX.py中定义的名字 2.基于创建的名称空间来执行XX.py. 3.创建名字XX.py指向该名称空间,XX.名字的操作,都是以X ...

  4. 集训第六周 数学概念与方法 概率 F题

    Submit Status Description Sometimes some mathematical results are hard to believe. One of the common ...

  5. echarts的简单应用之(一)柱形图

    前段时间做项目需要绘制一些图表来展示信息,从网上资料来看用的比较多的是百度开源的echarts.echarts的官网上有API以及demo.上面的图形都是非常炫的,不过都是静态 数据,我们做项目时不可 ...

  6. MySQL数据库连接不上的一种可能的解决办法

    右键单击我的电脑->管理->服务和应用程序->服务,右键停止如图所示的服务

  7. Leetcode 211.添加与搜索单词

    添加与搜索单词 设计一个支持以下两种操作的数据结构: void addWord(word) bool search(word) search(word) 可以搜索文字或正则表达式字符串,字符串只包含字 ...

  8. 全文搜索(A-3)-推荐系统构建步骤

    用户研究 用户建模 系统建造

  9. 完美解决了span的宽度设置

    下 面代码的CSS定义完美解决了span的宽度设置问题.由于浏览器通常对不支持的CSS属性采取忽略处理的态度,所以最好将display:inline -block行写在后面,这样在Firefox里面, ...

  10. 守护进程详解及创建,daemon()使用

    一,守护进程概述 Linux Daemon(守护进程)是运行在后台的一种特殊进程.它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件.它不需要用户输入就能运行而 且提供某种服务,不是对整 ...