TFLearn 在给定模型精度时候提前终止训练
拿来主义:看我的代码,我是在模型acc和验证数据集val_acc都达到99.8%时候才终止训练。
import numpy as np
import tflearn
from tflearn.layers.core import dropout
from tflearn.layers.normalization import batch_normalization
from tflearn.data_utils import to_categorical
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import sys class EarlyStoppingCallback(tflearn.callbacks.Callback):
def __init__(self, val_acc_thresh):
""" Note: We are free to define our init function however we please. """
# Store a validation accuracy threshold, which we can compare against
# the current validation accuracy at, say, each epoch, each batch step, etc.
self.val_acc_thresh = val_acc_thresh def on_epoch_end(self, training_state):
"""
This is the final method called in trainer.py in the epoch loop.
We can stop training and leave without losing any information with a simple exception.
"""
#print dir(training_state)
print("Terminating training at the end of epoch", training_state.epoch)
if training_state.val_acc >= self.val_acc_thresh and training_state.acc_value >= self.val_acc_thresh:
raise StopIteration def on_train_end(self, training_state):
"""
Furthermore, tflearn will then immediately call this method after we terminate training,
(or when training ends regardless). This would be a good time to store any additional
information that tflearn doesn't store already.
"""
print("Successfully left training! Final model accuracy:", training_state.acc_value) if __name__ == "__main__":
training_data = []
with open("feature_with_dnn_todo.dat") as f:
training_data = [parse_line(line) for line in f] X = training_data
org_labels = [1 if int(x[0])==2.0 else 0 for x in X]
labels = to_categorical(org_labels, nb_classes=2)
data = [x[1:] for x in X]
input_dim = len(data[0]) X = data
Y = labels print "X len:", len(X), "Y len:", len(Y)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.2, random_state=42)
print trainX[0]
print trainY[0]
print testX[-1]
print testY[-1] # Build neural network
net = tflearn.input_data(shape=[None, input_dim])
# RMSProp | epoch: 100 | loss: 0.25209 - acc: 0.9109 | val_loss: 0.19742 - val_acc: 0.9392 -- iter: 14084/14084 remove unwanted_cols 2
# | RMSProp | epoch: 100 | loss: 0.29420 - acc: 0.9075 | val_loss: 0.14464 - val_acc: 0.9551 -- iter: 14084/14084
net = batch_normalization(net)
dense1 = tflearn.fully_connected(net, 64, activation='tanh',
regularizer='L2', weight_decay=0.001)
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
regularizer='L2', weight_decay=0.001)
dropout2 = tflearn.dropout(dense2, 0.8)
softmax = tflearn.fully_connected(dropout2, 2, activation='softmax') # Regression using SGD with learning rate decay and Top-3 accuracy
net = tflearn.regression(softmax, optimizer="rmsprop", learning_rate=0.001, loss='categorical_crossentropy') """
#| Adam | epoch: 100 | loss: 0.15578 - acc: 0.9419 | val_loss: 0.16620 - val_acc: 0.9392 -- iter: 14084/14084
net = batch_normalization(net)
net = tflearn.fully_connected(net, input_dim)
net = tflearn.fully_connected(net, 128, activation='tanh')
net = dropout(net, 0.5)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
"""
# Define model
model = tflearn.DNN(net)
# Start training (apply gradient descent algorithm)
# Initialize our callback with desired accuracy threshold.
early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.998)
try:
model.fit(trainX, trainY, validation_set=(testX, testY), n_epoch=500, batch_size=8, show_metric=True, callbacks=early_stopping_cb)
except StopIteration as e:
print "pass"
filename = 'dns_tunnel998.tflearn'
model.save(filename)
model.load(filename)
#model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=1024, n_epoch=5)
#model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=1024, n_epoch=5)
y_predict_list = model.predict(X)
y_predict = []
for i in y_predict_list:
#print i[0]
if i[0] >= 0.5:
y_predict.append(0)
else:
y_predict.append(1) print(classification_report(org_labels, y_predict))
print confusion_matrix(org_labels, y_predict)
The EarlyStoppingCallback Class
I show a proof-of-concept version of early stopping below. This is the simplest possible case: just stop training after the first epoch no matter what. It is up to the user to decide the conditions they want to trigger the stopping on.
class EarlyStoppingCallback(tflearn.callbacks.Callback):
def __init__(self, val_acc_thresh):
""" Note: We are free to define our init function however we please. """
# Store a validation accuracy threshold, which we can compare against
# the current validation accuracy at, say, each epoch, each batch step, etc.
self.val_acc_thresh = val_acc_thresh
def on_epoch_end(self, training_state):
"""
This is the final method called in trainer.py in the epoch loop.
We can stop training and leave without losing any information with a simple exception.
"""
print("Terminating training at the end of epoch", training_state.epoch)
raise StopIteration
def on_train_end(self, training_state):
"""
Furthermore, tflearn will then immediately call this method after we terminate training,
(or when training ends regardless). This would be a good time to store any additional
information that tflearn doesn't store already.
"""
print("Successfully left training! Final model accuracy:", training_state.acc_value)
# Initialize our callback with desired accuracy threshold.
early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.5)
Result: Train the Model and Stop Early
try:
# Give it to our trainer and let it fit the data.
trainer.fit(feed_dicts={X: trainX, Y: trainY},
val_feed_dicts={X: testX, Y: testY},
n_epoch=1,
show_metric=True, # Calculate accuracy and display at every step.
callbacks=early_stopping_cb)
except StopIteration:
print("Caught callback exception. Returning control to user program.")
Training Step: 860 | total loss: [1m[32m1.73372[0m[0m
| Optimizer | epoch: 002 | loss: 1.73372 - acc: 0.8196 | val_loss: 1.87058 - val_acc: 0.8011 -- iter: 55000/55000
Training Step: 860 | total loss: [1m[32m1.73372[0m[0m
| Optimizer | epoch: 002 | loss: 1.73372 - acc: 0.8196 | val_loss: 1.87058 - val_acc: 0.8011 -- iter: 55000/55000
--
Terminating training at the end of epoch 2
Successfully left training! Final model accuracy: 0.8196054697036743
Caught callback exception. Returning control to user program.
Appendix
For my own reference, this is the code I started with before tinkering with the early stopping solution above.
from __future__ import division, print_function, absolute_import
import os
import sys
import tempfile
import urllib
import collections
import math
import numpy as np
import tensorflow as tf
from scipy.io import arff
import tflearn
from sklearn.utils import shuffle
from sklearn.metrics import roc_auc_score
from tflearn.data_utils import shuffle, to_categorical
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization, batch_normalization
from tflearn.layers.estimator import regression
import tflearn.datasets.mnist as mnist
# Load the data and handle any preprocessing here.
X, Y, testX, testY = mnist.load_data(one_hot=True)
X, Y = shuffle(X, Y)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
# Define our network architecture: a simple 2-layer network of the form
# InputImages -> Fully Connected -> Softmax
out_readin1 = input_data(shape=[None,28,28,1])
out_fully_connected2 = fully_connected(out_readin1, 10)
out_softmax3 = fully_connected(out_fully_connected2, 10, activation='softmax')
hash='f0c188c3777519fb93f1a825ca758a0c'
scriptid='MNIST-f0c188c3777519fb93f1a825ca758a0c'
# Define our training metrics.
network = regression(out_softmax3,
optimizer='adam',
learning_rate=0.01,
loss='categorical_crossentropy',
name='target')
model = tflearn.DNN(network, tensorboard_verbose=3)
try:
model.fit(X, Y, n_epoch=1, validation_set=(testX, testY),
snapshot_epoch=False,
show_metric=True,
run_id=scriptid,callbacks=early_stopping_cb)
except StopIteration:
print("Caught callback exception. Returning control to user program.")
prediction = model.predict(testX)
auc=roc_auc_score(testY, prediction, average='macro', sample_weight=None)
accuracy=model.evaluate(testX,testY)
print("Accuracy:", accuracy)
print("ROC AUC Score:", auc)
Training Step: 860 | total loss: [1m[32m0.30941[0m[0m
| Adam | epoch: 001 | loss: 0.30941 - acc: 0.9125 -- iter: 55000/55000
Terminating training at the end of epoch 1
Successfully left training! Final model accuracy: 0.9125033020973206
Caught callback exception. Returning control to user program.
Accuracy: [0.90410000000000001]
ROC AUC Score: 0.992379719297
参考:http://mckinziebrandon.me/TensorflowNotebooks/2016/11/19/tflearn-only.html
TFLearn
19 Nov 2016
Examples::Extending Tensorflow::Trainer
import tensorflow as tf
import tflearn
import tflearn.datasets.mnist as mnist
trainX, trainY, testX, testY = mnist.load_data(one_hot=True)
hdf5 not supported (please install/reinstall h5py)
Extracting mnist/train-images-idx3-ubyte.gz
Extracting mnist/train-labels-idx1-ubyte.gz
Extracting mnist/t10k-images-idx3-ubyte.gz
Extracting mnist/t10k-labels-idx1-ubyte.gz
Define the Architecture (Basic Tensorflow)
# Because I don't feel like retyping stuff.
def tfp(shape):
return tf.placeholder("float", shape)
def tfrn(shape, name):
return tf.Variable(tf.random_normal(shape), name=name)
# Define the inputs/outputs/weights as usual.
X, Y = tfp([None, 784]), tfp([None, 10])
W1, W2, W3 = tfrn([784, 256], 'W1'), tfrn([256, 256], 'W2'), tfrn([256, 10], 'W3')
b1, b2, b3 = tfrn([256], 'b1'), tfrn([256], 'b2'), tfrn([10], 'b3')
# Multilayer perceptron.
def dnn(x):
x = tf.tanh(tf.add(tf.matmul(x, W1), b1))
x = tf.tanh(tf.add(tf.matmul(x, W2), b2))
x = tf.add(tf.matmul(x, W3), b3)
return x
net = dnn(X)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(net, Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
accuracy = tf.reduce_mean(tf.cast(
tf.equal( tf.argmax(net, 1), tf.argmax(Y, 1) ), tf.float32),
name='acc')
Using a TFLearn Trainer
trainop = tflearn.TrainOp(loss=loss, optimizer=optimizer, metric=accuracy, batch_size=128)
trainer = tflearn.Trainer(train_ops=trainop, tensorboard_verbose=1)
trainer.fit({X: trainX, Y: trainY}, val_feed_dicts={X: testX, Y: testY},
n_epoch=2, show_metric=True)
Training Step: 860 | total loss: [1m[32m1.73376[0m[0m
| Optimizer | epoch: 002 | loss: 1.73376 - acc: 0.8053 | val_loss: 1.78279 - val_acc: 0.8015 -- iter: 55000/55000
Training Step: 860 | total loss: [1m[32m1.73376[0m[0m
| Optimizer | epoch: 002 | loss: 1.73376 - acc: 0.8053 | val_loss: 1.78279 - val_acc: 0.8015 -- iter: 55000/55000
--
Training Callbacks
One suggestion for early stopping with tflearn (made by owner of tflearn repository) is to define a custom callback that raises an exception when we want to stop training. I’ve written a small snippet below as an example.
class EarlyStoppingCallback(tflearn.callbacks.Callback):
def __init__(self, acc_thresh):
"""
Args:
acc_thresh - if our accuracy > acc_thresh, terminate training.
"""
self.acc_thresh = acc_thresh
self.accs = []
def on_epoch_end(self, training_state):
""" """
self.accs.append(training_state.global_acc)
if training_state.val_acc is not None and training_state.val_acc < self.acc_thresh:
raise StopIteration
cb = EarlyStoppingCallback(acc_thresh=0.5)
trainer.fit({X: trainX, Y: trainY}, val_feed_dicts={X: testX, Y: testY},
n_epoch=3, show_metric=True, snapshot_epoch=False,
callbacks=cb)
Training Step: 3965 | total loss: [1m[32m0.33810[0m[0m
| Optimizer | epoch: 010 | loss: 0.33810 - acc: 0.9455 -- iter: 55000/55000
GOODBYE
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-24-9c383c6f5a8b> in <module>()
2 trainer.fit({X: trainX, Y: trainY}, val_feed_dicts={X: testX, Y: testY},
3 n_epoch=3, show_metric=True, snapshot_epoch=False,
----> 4 callbacks=cb)
/usr/local/lib/python3.5/dist-packages/tflearn/helpers/trainer.py in fit(self, feed_dicts, n_epoch, val_feed_dicts, show_metric, snapshot_step, snapshot_epoch, shuffle_all, dprep_dict, daug_dict, excl_trainops, run_id, callbacks)
315
316 # Epoch end
--> 317 caller.on_epoch_end(self.training_state)
318
319 finally:
/usr/local/lib/python3.5/dist-packages/tflearn/callbacks.py in on_epoch_end(self, training_state)
67 def on_epoch_end(self, training_state):
68 for callback in self.callbacks:
---> 69 callback.on_epoch_end(training_state)
70
71 def on_train_end(self, training_state):
<ipython-input-23-d44cbdbc0814> in on_epoch_end(self, training_state)
13 if True:
14 print("GOODBYE")
---> 15 raise StopIteration
StopIteration:
cb.accs
[None]
参考:
Early Stopping with TensorFlow and TFLearn
20 Nov 2016
import tensorflow as tf
import tflearn
import tflearn.datasets.mnist as mnist
trainX, trainY, testX, testY = mnist.load_data(one_hot=True)
hdf5 not supported (please install/reinstall h5py)
Extracting mnist/train-images-idx3-ubyte.gz
Extracting mnist/train-labels-idx1-ubyte.gz
Extracting mnist/t10k-images-idx3-ubyte.gz
Extracting mnist/t10k-labels-idx1-ubyte.gz
n_features = 784
n_hidden = 256
n_classes = 10
# Define the inputs/outputs/weights as usual.
X = tf.placeholder("float", [None, n_features])
Y = tf.placeholder("float", [None, n_classes])
# Define the connections/weights and biases between layers.
W1 = tf.Variable(tf.random_normal([n_features, n_hidden]), name='W1')
W2 = tf.Variable(tf.random_normal([n_hidden, n_hidden]), name='W2')
W3 = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='W3')
b1 = tf.Variable(tf.random_normal([n_hidden]), name='b1')
b2 = tf.Variable(tf.random_normal([n_hidden]), name='b2')
b3 = tf.Variable(tf.random_normal([n_classes]), name='b3')
# Define the operations throughout the network.
net = tf.tanh(tf.add(tf.matmul(X, W1), b1))
net = tf.tanh(tf.add(tf.matmul(net, W2), b2))
net = tf.add(tf.matmul(net, W3), b3)
# Define the optimization problem.
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(net, Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
accuracy = tf.reduce_mean(tf.cast(
tf.equal(tf.argmax(net, 1), tf.argmax(Y, 1) ), tf.float32), name='acc')
Early Stopping
Training Setup
In tflearn, we can train our model with a tflearn.Trainer object: “Generic class to handle any TensorFlow graph training. It requires the use of TrainOp to specify all optimization parameters.”
TrainOp represents a set of operation used for optimizing a network.
Example: Time to initialize our trainer to work with our MNIST network. Below we create a TrainOp object that is then used for the purpose of telling our trainer
- Our loss function. (softmax cross entropy with logits)
- Our optimizer. (GradientDescentOptimizer)
- Our evaluation [tensor] metric. (classification accuracy)
trainop = tflearn.TrainOp(loss=loss, optimizer=optimizer, metric=accuracy, batch_size=128)
trainer = tflearn.Trainer(train_ops=trainop, tensorboard_verbose=1)
Callbacks
The Callbacks interface describes a set of methods that we can implement ourselves that will be called during runtime. Below are our options, where here we will be primarily concerned with the on_epoch_end() method. * __ Methods __ :
def on_train_begin(self, training_state):
def on_epoch_begin(self, training_state):
def on_batch_begin(self, training_state):
def on_sub_batch_begin(self, training_state):
def on_sub_batch_end(self, training_state, train_index=0):
def on_batch_end(self, training_state, snapshot=False):
def on_epoch_end(self, training_state):
def on_train_end(self, training_state):
- TrainingState: Notice that each method requires us to pass a training_state object as an argument. These useful helpers will be able to provide us with the information we need to determine when to stop training. Below is a list of the instance variables we can access with a training_state object:
- self.epoch
- self.step
- self.current_iter
- self.acc_value
- self.loss_value
- self.val_acc
- self.val_loss
- self.best_accuracy
- self.global_acc
- self.global_loss
- Implementing our Callback: Let’s say we want to stop training when the validation accuracy reaches a certain threshold. Below, we implement the code required to define such a callback and fit the MNIST data.
class EarlyStoppingCallback(tflearn.callbacks.Callback):
def __init__(self, val_acc_thresh):
""" Note: We are free to define our init function however we please. """
self.val_acc_thresh = val_acc_thresh
def on_epoch_end(self, training_state):
""" """
# Apparently this can happen.
if training_state.val_acc is None: return
if training_state.val_acc > self.val_acc_thresh:
raise StopIteration
# Initializae our callback.
early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.5)
# Give it to our trainer and let it fit the data.
trainer.fit(feed_dicts={X: trainX, Y: trainY},
val_feed_dicts={X: testX, Y: testY},
n_epoch=2,
show_metric=True, # Calculate accuracy and display at every step.
snapshot_epoch=False,
callbacks=early_stopping_cb)
Training Step: 1720 | total loss: [1m[32m0.81290[0m[0m
| Optimizer | epoch: 004 | loss: 0.81290 - acc_2: 0.8854 -- iter: 55000/55000
Using tf.contrib.learn instead
Iris data loading/tutorial prep
Note: can also load via: ```python import csv import random import numpy as np from sklearn import datasets from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.33, random_state=42) iris = datasets.load_iris() print(iris.data.shape) print(“Xt”, X_train.shape, “Yt”, y_train.shape) ```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Suppress the massive amount of warnings.
tf.logging.set_verbosity(tf.logging.ERROR)
# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"
# Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TRAINING,
target_dtype=np.int,
features_dtype=np.float32)
test_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TEST,
target_dtype=np.int,
features_dtype=np.float32)
# Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir="/tmp/iris_model")
# Fit model.
classifier.fit(x=X_train,
y=y_train,
steps=2000)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(x=X_test, y=y_test)["accuracy"]
print('Accuracy: {0:f}'.format(accuracy_score))
# Classify two new flower samples.
new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
y = classifier.predict(new_samples)
print('Predictions: {}'.format(str(y)))
Accuracy: 0.980000
Predictions: [1 1]
Validation Monitors
# Vanilla version
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(test_set.data,
test_set.target,
every_n_steps=50)
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir="/tmp/iris_model",
config=tf.contrib.learn.RunConfig(
save_checkpoints_secs=1))
classifier.fit(x=training_set.data,
y=training_set.target,
steps=2000,
monitors=[validation_monitor])
Estimator(params={'dropout': None, 'hidden_units': [10, 20, 10], 'weight_column_name': None, 'feature_columns': [_RealValuedColumn(column_name='', dimension=4, default_value=None, dtype=tf.float32, normalizer=None)], 'optimizer': 'Adagrad', 'n_classes': 3, 'activation_fn': <function relu at 0x7f8568caa598>, 'num_ps_replicas': 0, 'gradient_clip_norm': None, 'enable_centered_bias': True})
Customizing the Evaluation Metrics and Stopping Early
If we run the code below, it stops early! Warning: You’re going to see a lot of WARNING print outputs from tf. I guess this tutorial is a bit out of date. But that’s not what we care abot here, we just want that early stopping! The important output to notice is
INFO:tensorflow:Validation (step 22556): accuracy = 0.966667, global_step = 22535, loss = 0.2767
INFO:tensorflow:Stopping. Best step: 22356 with loss = 0.2758353650569916.
validation_metrics = {"accuracy": tf.contrib.metrics.streaming_accuracy,
"precision": tf.contrib.metrics.streaming_precision,
"recall": tf.contrib.metrics.streaming_recall}
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
test_set.data,
test_set.target,
every_n_steps=50,
#metrics=validation_metrics,
early_stopping_metric='loss',
early_stopping_metric_minimize=True,
early_stopping_rounds=200)
tf.logging.set_verbosity(tf.logging.ERROR)
classifier.fit(x=training_set.data,
y=training_set.target,
steps=2000,
monitors=[validation_monitor])
Estimator(params={'dropout': None, 'hidden_units': [10, 20, 10], 'weight_column_name': None, 'feature_columns': [_RealValuedColumn(column_name='', dimension=4, default_value=None, dtype=tf.float32, normalizer=None)], 'optimizer': 'Adagrad', 'n_classes': 3, 'activation_fn': <function relu at 0x7f8568caa598>, 'num_ps_replicas': 0, 'gradient_clip_norm': None, 'enable_centered_bias': True})
TFLearn 在给定模型精度时候提前终止训练的更多相关文章
- MindSpore模型精度调优实战:如何更快定位精度问题
摘要:为大家梳理了针对常见精度问题的调试调优指南,将以"MindSpore模型精度调优实战"系列文章的形式分享出来,帮助大家轻松定位精度问题,快速优化模型精度. 本文分享自华为云社 ...
- MindSpore模型精度调优实战:常用的定位精度调试调优思路
摘要:在模型的开发过程中,精度达不到预期常常让人头疼.为了帮助用户解决模型调试调优的问题,我们为MindSpore量身定做了可视化调试调优组件:MindInsight. 本文分享自华为云社区<技 ...
- ES5 forEach()用法和提前终止遍历
forEach()方法从头到尾的遍历数组,为每个元素调用指定的函数,第一个参数接收的是一个函数,第二个参数是可选的,如果有第二个参数,则调用的函数被看作是第二个参数的方法(第二个参数可以作为第一个调用 ...
- forEach 如何提前终止 跳出运行
forEach 如何提前终止 跳出运行 try{ arr.forEach(function(item,index){ if (...) { foreach.break=new Error(" ...
- MindSpore模型精度调优实践
MindSpore模型精度调优实践 引论:在模型的开发过程中,精度达不到预期常常让人头疼.为了帮助用户解决模型调试调优的问题,为MindSpore量身定做了可视化调试调优组件:MindInsight. ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- pytorch入门2.2构建回归模型初体验(开始训练)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
随机推荐
- javascript事件委托和jquery事件委托
元旦过后,新年第一篇. 初衷:很多的面试都会涉及到事件委托,前前后后也看过好多博文,写的都很不错,写的各有千秋,自己思前想后,为了以后自己的查看,也同时为现在找工作的前端小伙伴提供一个看似更全方位的解 ...
- drupal8 用户指南
一句话概括 - 官方文档 概念- Drupal是个内容管理系统哦 那么,什么是内容管理系统? 就是用户自己编辑自己的网站内容的一个系统. 那么,什么是Drupal呢? Drupal是一个通过模块和主题 ...
- Python中接收用户的输入
一.如何去接收用户的输入?使用函数 input() 函数 input() 让程序暂停运行,等待用户输入一些文本,获取用户的输入后,Python将其存储到一个变量中,以方便后期使用. name = in ...
- Python数据类型之数字类型
整数 在Python中,整数可以执行 加(+)减(-)乘(*)除(/) 运算. 1 + 2 3 - 2 2 * 3 3 / 2 # 1.5 在控制台,Python直接返回运算结果. Python中也可 ...
- loaction.reload(false)和location.reload(true) js发起请求
loaction.reload(false)和location.reload(true)差别: loaction.reload(false) 先判断页面有没修改,有的话就从服务器下载页面,没有就直接从 ...
- mybatis返回map类型数据空值字段不显示(三种解决方法)
转http://blog.csdn.net/lulidaitian/article/details/70941769 一.查询sql添加每个字段的判断空 IFNULL(rate,'') as rate ...
- vector元素的删除 remove的使用 unique的使用
在vector删除指定元素可用以下语句 : v.erase(remove(v.begin(), v.end(), element), installed.end()); 可将vector中所有值为el ...
- Qt笔记——各种组件和其他细碎用法
LineEdit 获取文本:ui->usrLineEdit->text() 清空内容:ui->pwdLineEdit->clear(); 定位光标:ui->usrLine ...
- Free Goodies UVA - 12260
Petra and Jan have just received a box full of free goodies, and want to divide the goodies between ...
- Ubuntu 16.04下SecureCRT无法输入中文的解决思路
说明:首先网上的方法基本都是不行的,别试了. 但是可以有弥补方案: 1.通过外界的软件编辑好中文,然后粘贴过去.虽然是多了一步,但是也可以输入中文. 2.关于这个问题应该是没有中文字体库导致的,可以尝 ...