【题目链接】

点击打开链接

【算法】

用f[i][j]表示走到(i,j)这个位置有多少种方案,因为走到(i,j)这个位置,上一步一定在它左上角的矩形中,所以,

f(i,j) = sigma( f(x,y) ) ( (x,y)在左上角的矩形中)

我们尝试将它画出来,发现是斜着的杨辉三角

然后,通过找规律,我们发现 : f(n,m) = C(n+m-4,n-2)

求C函数的值,这里有一种方法 :

C(n,r) mod P = (n! / (n - r)! / r!) mod P

= (n!) mod P * inv( (n - r)! ) mod P * inv( r! ) mod P( 其中,inv表示乘法逆元 )

考虑预处理阶乘和阶乘逆元

阶乘很容易求,那么,阶乘逆元怎么求呢?

这里有一种线性求阶乘逆元的方法 ( 如果我们要求 inv( n! ) ) :

inv(n ! ) = inv( (n - 1)! n )

= inv( (n - 1)! ) inv( n )

所以 inv( (n - 1)! ) = inv( n ! ) * inv( inv( n ) )

= inv( n! ) * n

有了这个式子,我们便可以在线性时间内求出所有的阶乘逆元

这一题,我们只要预处理阶乘和阶乘逆元,然后,O(1)回答询问,即可

【代码】

#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010
const long long P = ; long long n,m;
long long fac[MAXN],inv[MAXN]; inline long long power(long long a,long long n)
{
long long ans = ,b = a;
while (n > )
{
if (n & ) ans = (ans * b) % P;
b = (b * b) % P;
n >>= ;
}
return ans;
}
inline void init()
{
int i;
fac[] = ;
for (i = ; i < MAXN; i++) fac[i] = fac[i-] * i % P;
inv[MAXN-] = power(fac[MAXN-],P-);
for (i = MAXN - ; i >= ; i--) inv[i] = inv[i+] * (i + ) % P;
}
inline long long C(long long n,long long m)
{
if (!m) return ;
else if (n == m) return ;
else return fac[n] * inv[n-m] % P * inv[m] % P;
} int main() { init();
while (scanf("%d%d",&n,&m) != EOF)
{
printf("%lld\n",C(n+m-,n-));
} return ; } /*
f( n! ) = f( (n-1)! n) = f( (n - 1)! ) f(n)
f( n! ) * f( f(n) ) = f( (n - 1)! )
f( n! ) * n = f( (n - 1)! )
f( n! ) = f ( (n + 1)! ) * (n + 1)
*/

【HDU 5698】 瞬间移动的更多相关文章

  1. HDU 5698 瞬间移动 数学

    瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...

  2. HDU 5698 瞬间移动

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. hdu 5698 瞬间移动(排列组合)

    这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...

  5. 【HDU 5698】瞬间移动(组合数,逆元)

    x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步.就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i).相乘起来. 假设$m\leq n$$$\sum_{i=1}^{m-2} ...

  6. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  8. 数论基础之组合数&计数问题

    一.组合数:问题引入:现在有 n 个球,取其中的 k 个球,问一共有多少种方式?答案: 公式直观解释:我们考虑有顺序地取出 k 个球:第一次有 n 种选择,第二次有 n-1 种选择,...,第 k 次 ...

  9. hdu 1269 迷宫城堡 强连通分量

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. [Python3网络爬虫开发实战] 6.1-什么是Ajax

    Ajax,全称为Asynchronous JavaScript and XML,即异步的JavaScript和XML.它不是一门编程语言,而是利用JavaScript在保证页面不被刷新.页面链接不改变 ...

  2. 零基础入门学习Python(17)--函数:Python的乐高积木

    前言 相信大家小时候都玩过神奇的乐高积木, 只要通过想象力和创造力我们可以拼凑很多神奇的东西,那么随着我们学习的深入,我们编写的Python代码也将日益增加,并且也越来越复杂, 所以呢,我们需要找寻一 ...

  3. MySQL-----改

    改 **修改用户名** rename user 'username'@'IP address' to 'new username'@'IP address'; **修改密码** set passwor ...

  4. vscode调试nodejs

    1.安装nodejs 2.安装vscode 3.vscode安装debugger for chrome插件 4.新建nodejs-test文件夹,新建server.js空白文件,添加内容: var h ...

  5. 二元决策图(Binary decision diagram)

    修一门写作课题目是Binary decision diagram.在网上查了些资料感觉说的都不是很清楚,看了半天还是很困惑,这到底是个啥?到底咋使?于是决定写下这篇随笔,总结一下看过的各种资料加上自己 ...

  6. linux 磁盘配额配置

    1. 添加一块新磁盘 ,分区 .格式化 .(mkfs.etx3 /dev/sdc5/) 2.设置开机自动挂载(vi /etc/fstab) 添加磁盘配额支持 (用户配额usrquota.组配额grpq ...

  7. Codeforces 404D Minesweeper 1D

    题意: 给定字符串,其中'*'表示地雷,'1'表示左/右边有一个地雷相邻,'2'表示左右两边均有地雷相邻,'0'表示左右均无地雷相邻,'?'表示待定,可填入0,1,2或者地雷,有多少种表示方法使字母串 ...

  8. [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd

    连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...

  9. 洛谷 P2033 Chessboard Dance

    P2033 Chessboard Dance 题目描述 在棋盘上跳舞是件有意思的事情.现在给你一张国际象棋棋盘和棋盘上的一些子以及你的初始位置和方向.求按一定操作后,棋盘的状态. 操作有四种,描述如下 ...

  10. 【CV知识学习】early stop、regularation、fine-tuning and some other trick to be known

    深度学习有不少的trick,而且这些trick有时还挺管用的,所以,了解一些trick还是必要的.上篇说的normalization.initialization就是trick的一种,下面再总结一下自 ...