HDU 6441 费马大定理+勾股数
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n")
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl
#define ffread(a) fastIO::read(a)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn=1e6+,inf=0x3f3f3f3f;
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
ll n, a, b, c;
scanf("%lld%lld", &n, &a);
if (n == )
{
printf("%lld %lld\n", , +a);
}
else if (n == )
{
if (a % == )
{
ll tmp = (a-)/;
b = *tmp*tmp+*tmp;
c = b+;
printf("%lld %lld\n", b, c);
}
else
{
ll tmp = a/ - ;
b = tmp*tmp + *tmp;
c = b + ;
printf("%lld %lld\n", b, c);
}
}
else
printf("-1 -1 \n");
}
return ;
}
勾股数https://wenku.baidu.com/view/8282f1b669eae009591bec85.html
HDU 6441 费马大定理+勾股数的更多相关文章
- hdu 6441 (费马大定理+勾股数 数学)
题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...
- hdu 6441 Find Integer(费马大定理+勾股数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...
- 2015浙工大校赛-Problem C: 三角—— 费马大定理+勾股数
题目 有一个直角三角形三边为 A,B,C 三个整数.已知 C 为最长边长,求一组B,C,使得B和C最接近. (题目链接) 分析 打表找规律. 或者直接一点的枚举 $C-B$ 的值.(既然枚举 B 不现 ...
- HDU - 6441(费马大定理)
链接:HDU - 6441 题意:已知 n,a,求 b,c 使 a^n + b^n = c^n 成立. 题解:费马大定理 1.a^n + b^n = c^n,当 n > 2 时无解: 2. 当 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- hdu6441 Find Integer 求勾股数 费马大定理
题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...
- MT【315】勾股数
(高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a ...
- C语言 · 勾股数
勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...
- 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。
证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...
随机推荐
- iOS 播放本地,网络视频
/** * 创建媒体播放控制器MPMoviePlayerControlle 可以控制尺寸 * * @return 媒体播放控制器 */ -(MPMoviePlayerController *)mo ...
- Synplify FPGA 逻辑综合
作为 Synopsys FPGA 设计解决方案的一部分,Synplify FPGA 综合软件是实现高性能.高性价比的 FPGA 设计的行业标准. 其独特的行为提取综合技术 (Behavior Extr ...
- postgres的强制类型转换与时间函数
一.类型转换postgres的类型转换:通常::用来做类型转换,timestamp到date用的比较多select now()::dateselect now()::varchar 示例1:日期的 ...
- [Python筆記] 將 Pandas 的 Dataframe 寫入 Sqlite3
使用 pandas.io 寫入 Sqlite import sqlite3 as lite from pandas.io import sql import pandas as pd 依照 if_ex ...
- PHP一句话后门过狗姿势万千之传输层加工
既然木马已就绪,那么想要利用木马,必然有一个数据传输的过程,数据提交是必须的,数据返回一般也会有的,除非执行特殊命令. 当我们用普通菜刀连接后门时,数据时如何提交的,狗狗又是如何识别的,下面结合一个实 ...
- SQL数据库移植到ARM板步骤
SQL作为一种存储数据的数据结构,具有体积小(能堵存储的数据多),容易移植等优点.例如,在Ubuntu或者ARM开发板上被大量应用.下面就简单说一下SQL移植到ARM板的步骤. 下载源代码 (记得在家 ...
- docker新手入门(基本命令以及介绍)
Docker 的核心内容 镜像 (Image) 容器 (Container) 仓库 (Repository) Registry 用来保存用户构建的镜像 docker的开始使用: 1. docker ...
- 20针,14针,10针JTAG引脚对应关系
J-Link是常用的调试工具,用于程序的调试和下载.常用的J-Link的的接口有很多种,常见的有20针,14针和10针. J-Link可以使用JTAG方式下载调试程序,也可以使用SWD方式.从引脚方面 ...
- iview分析
- Hadoop伪集群部署
环境准备 [root@jiagoushi ~]# yum -y install lrzsz 已加载插件:fastestmirror Repository 'saltstack-repo': Error ...