树上染色 bzoj-4033 HAOI-2015

题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和。求最大收益。

注释:$1\le n\le 2000$


想法:我们看到了数据范围...一般树上问题这个数据范围一般就是背包或者数据结构,这题我们考虑树上背包。

我们考虑枚举每一棵子树选取一些黑点的贡献。但是这样选取是有后效性的,因为内部点的选取可能在外面选取同样的点产生不一样的效果,所以我们尝试把后效性移除。

具体地:我们可以将边权下传到点权,之后所有的关于每条边脑袋上的那条边的权值都预先被更新就没有后效性了。

最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std; typedef long long ll;
int n,m; ll f[N][N],dpth[N]; int size[N];
int head[N],to[N<<1],nxt[N<<1],val[N<<1],tot;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+c-'0',c=nc(); return x;}
inline void add(int x,int y,int z) {to[++tot]=y; val[tot]=z; nxt[tot]=head[x]; head[x]=tot;}
void dfs(int pos,int fa)
{
size[pos]=1;
for(int i=head[pos];i;i=nxt[i]) if(to[i]!=fa)
{
dpth[to[i]]=val[i];
dfs(to[i],pos);
for(int j=min(m,size[pos]);~j;j--) for(int k=min(size[to[i]],m-j);~k;k--)
f[pos][j+k]=max(f[pos][j+k],f[pos][j]+f[to[i]][k]);
size[pos]+=size[to[i]];
}
for(int i=0;i<=min(m,size[pos]);i++) f[pos][i]+=dpth[pos]*((i*(m-i))+(size[pos]-i)*(n-size[pos]-m+i));
}
void test()
{
puts("size"); for(int i=1;i<=n;i++) printf("%d ",size[i]); puts("");
puts("f"); for(int i=1;i<=n;i++) {for(int j=0;j<=m;j++) printf("%lld ",f[i][j]); puts("");}
}
int main()
{
n=rd(),m=rd(); int x,y,z; for(int i=1;i<n;i++) {x=rd(),y=rd(),z=rd(); add(x,y,z); add(y,x,z);}
dfs(1,1);/* test(); */
printf("%lld\n",f[1][m]);
}
/*
5 2
1 2 3
1 5 1
2 3 1
2 4 2
*/

小结:嘻嘻嘻嘻,好东西。

[bzoj4033][HAOI2015]树上染色_树形dp的更多相关文章

  1. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  2. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  3. BZOJ4033 [HAOI2015]树上染色 【树形dp】

    题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间 ...

  4. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  5. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  6. 【BZOJ4033】[HAOI2015] 树上染色(树形DP)

    点此看题面 大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色.要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值. 树形\(DP\) 这道 ...

  7. 洛谷P3177 [HAOI2015]树上染色(树形dp)

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  8. bzoj 4033: [HAOI2015]树上染色【树形dp】

    准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...

  9. Luogu3177 [HAOI2015]树上染色 (树形DP)

    考场上打出来个\(2^n n^2 \log (n)\),还文件错误RE了... 其实这不就是个变了一点点的树形背包,状态是节点\(u\)子树的\(贡献\). //#include <iostre ...

随机推荐

  1. win10下spark+Python开发环境配置

    Step0:安装好Java ,jdk Step1:下载好: Step2: 将解压后的hadoop和spark设置好环境变量: 在系统path变量里面+: Step3: 使用pip安装 py4j : p ...

  2. jquery.autocomplete.js用法及示例,小白进

    8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 ...

  3. ASP.NET文件操作

    在开发Web程序时,不但有存储在数据库中和XML文件中的数据形式需要处理,而且还有很多诸如文本.Word文档和图片等格式的文件数据需要处理.尤其是在一些信息管理系统中,文档的处理流程贯穿了整个系统的运 ...

  4. JOptionPane.showMessageDialog出现在浏览器下面的解决方法

    将JOptionPane.showMessageDialog(null, result, "发布公告:", JOptionPane.INFORMATION_MESSAGE);中的参 ...

  5. myeclipse中部署svn

    一.下载SVN插件subclipse 下载地址:http://subclipse.tigris.org/servlets/ProjectDocumentList?folderID=2240 在打开的网 ...

  6. JavaScript 兼容新旧版chrome和firefox的桌面通知

    1.新/旧版本的chrome和firefox都可支持,IE下不支持因此设置为了在最小化窗口处闪烁显示提示文字. 2.设置为提示窗口显示5秒即关闭. 3.可设置图标和点击提示窗口要跳转到的页面(见输入参 ...

  7. SQL函数-汉字首字母查询

    汉字首字母查询处理用户定义函数 CREATE FUNCTION f_GetPY1(@str nvarchar(4000))RETURNS nvarchar(4000)ASBEGIN DECLARE @ ...

  8. Java 基础入门随笔(8) JavaSE版——静态static

    面向对象(2) this:代表对象.代表哪个对象呢?当前对象. 当成员变量和局部变量重名,可以用关键字this来区分. this就是所在函数所属对象的引用.(简单说:哪个对象调用了this所在的函数, ...

  9. 并发编程学习笔记(15)----Executor框架的使用

    Executor执行已提交的 Runnable 任务的对象.此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节.调度等)分离开来的方法.通常使用 Executor 而不是显式地创建 ...

  10. R语言学习 - 线图绘制

    线图是反映趋势变化的一种方式,其输入数据一般也是一个矩阵. 单线图 假设有这么一个矩阵,第一列为转录起始位点及其上下游5 kb的区域,第二列为H3K27ac修饰在这些区域的丰度,想绘制一张线图展示. ...