BZOJ4561:圆的异或并(扫描线+set||splay||线段树)
在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面
Input
第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的
Output
仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。
Sample Input
Sample Output
3
思路:扫描线,有很多这样的题,思路就是分成上下两半圆,然后用数据结构。
前提是不相交。然后可以求出包含关系。
具体:把一个圆分为上下两个半圆,然后每次扫描线扫到一个圆X(左边),去找这个圆的“上面的第一个半圆Cir”,若Cir是上半圆的话,则X被其包含,否则无。 然后把圆X加入数据结构中。
扫描到一个圆X(右边),则把圆X从数据结构中删除。
对于当前扫描线里的圆(保存在数据结构里的那些),排序是根据直线与圆的交点的纵坐标排序得到:
下面左图,B上面第一个圆是A,因为3上面第一个点是2。而2代表下半圆,说明无圆包含B。
下图右图,B上面第一个圆是A,因为3上面第一个点是1。而1代表上半圆,说明第一个包含B的是A。(可能A还被其他圆包含,即B<A<...)
简单证明划分圆来解决的可行性:
由于圆之间不相交,所以我们用平行Y轴是直线去扫描的时候(从左向右),直线与圆产生一些交点。
易得:这些圆中,一个圆与直线的两个交点与其他圆的两个交点不交叉。即一对交点“属于哪个圆”这个属性“相离”或者“包含”,不会“交叉”,如下:
如左图:A圆与直线交点1,2,B圆与直线交点3,4。二圆相离,所以(1,2),(3,4)。
如右图:A圆与直线交点1,2,B圆与直线交点3,4。二圆包含。所以(1,(3,4)2)。
不会出现下图中的(1,(3,2)4)
因此,一个圆X被圆Y包含,要求最内层的Y,只需要在这条线上找X与直线的交点a上面的第一个“下半圆交点”即可。
-----------------------上面是简单证明,下面是整正题--------------------------
数据结构用于查找大于等于a的数,可以是set,线段树,判平衡树等。
这里是练习平衡树,但是为了保险,先写了下set,不然直接写splay找错很麻烦。
待续。。。。
#include<set>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=;
struct cir{
ll x,y,r;
cir(){}
cir(ll xx,ll yy,ll rr):x(xx),y(yy),r(rr){}
}c[maxn];
struct ins{
int x,opt,id;
ins(){}
ins(int xx,int oo,int ii):x(xx),opt(oo),id(ii){}
}w[maxn<<];=
ll Lx,sig[maxn]; set<ins>s;
ll cal(ll x) { return x*x; }
bool cmp(ins a,ins b){ return a.x<b.x; }
bool operator <(ins a,ins b){ double y1=c[a.id].y+a.opt*sqrt(cal(c[a.id].r)-cal(c[a.id].x-Lx));
double y2=c[b.id].y+b.opt*sqrt(cal(c[b.id].r)-cal(c[b.id].x-Lx));
if(y1==y2) return a.opt<b.opt; //当一个圆的左顶点刚好在LX线上?
return y1<y2;
}
int main()
{
int N; scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%lld%lld%lld",&c[i].x,&c[i].y,&c[i].r);
w[(i<<)-]=ins(c[i].x-c[i].r,,i);
w[i<<]=ins(c[i].x+c[i].r,-,i);
}
sort(w+,w+(N<<)+,cmp);
for(int i=;i<=(N<<);i++){
Lx=w[i].x;
if(w[i].opt==){//左,加圆 set<ins>::iterator it;
it=s.upper_bound(ins(,,w[i].id));
if(it==s.end()) sig[w[i].id]=;
else{
if((*it).opt==-) sig[w[i].id]=sig[(*it).id];
else sig[w[i].id]=-sig[(*it).id];
}
s.insert(ins(,,w[i].id));
s.insert(ins(,-,w[i].id));
}
else {
s.erase(ins(,,w[i].id));
s.erase(ins(,-,w[i].id));
}
}
ll ans=;
for(int i=;i<=N;i++) ans+=sig[i]*cal(c[i].r);
printf("%lld\n",ans);
return ;
}
BZOJ4561:圆的异或并(扫描线+set||splay||线段树)的更多相关文章
- 【BZOJ4561】[JLoi2016]圆的异或并 扫描线
[BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...
- BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线
扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...
- 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题
“队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄> 线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...
- P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树
$ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 ...
- [CERC2017]Intrinsic Interval——扫描线+转化思想+线段树
[CERC2017]Intrinsic Interval https://www.luogu.org/blog/ywycasm/solution-p4747# 这种“好的区间”,见得还是比较多的了. ...
- [BZOJ4561][JLOI2016]圆的异或并(扫描线)
考虑任何一条垂直于x轴的直线,由于圆不交,所以这条直线上的圆弧构成形似括号序列的样子,且直线移动时圆之间的相对位置不变. 将每个圆拆成两边,左端加右端删.每次加圆时考虑它外面最内层的括号属于谁.用se ...
- BZOJ 4561: [JLoi2016]圆的异或并 扫描线 + set
看题解看了半天...... Code: #include<bits/stdc++.h> #define maxn 200010 #define ll long long using nam ...
- CodeForces 781E Andryusha and Nervous Barriers 线段树 扫描线
题意: 有一个\(h \times w\)的矩形,其中有\(n\)个水平的障碍.从上往下扔一个小球,遇到障碍后会分裂成两个,分别从障碍的两边继续往下落. 如果从太高的地方落下来,障碍会消失. 问从每一 ...
- 【BZOJ2161】布娃娃 扫描线+线段树
[BZOJ2161]布娃娃 Description 小时候的雨荨非常听话,是父母眼中的好孩子.在学校是老师的左右手,同学的好榜样.后来她成为艾利斯顿第二代考神,这和小时候培养的良好素质是分不开的.雨荨 ...
随机推荐
- Leetcode 221.最大的正方形
最大的正方形 在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积. 示例: 输入: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 输出 ...
- Laya 分帧加载优化
Laya 分帧加载优化 @author ixenos Flash中的EnterFrame事件在Laya中等同于Laya.timer.frameLoop(1,...) Laya.timer.frameL ...
- oracle 9i/10g/11g(11.2.0.3)安装包和PATCH下载地址汇总
今天上PUB看见一位热心人汇总了这么个地址列表,转发来空间: 把下面的地址复制到讯雷里就可以下载. -------------------------------------------------- ...
- poj 2337 && zoj 1919 欧拉回路+连通性判断
题目要求按字典序排列,而且可能有重边 所以一开始就将数组从大到小排列,那么我将字符串加入链表时就会令小的不断前移,大的被挤到后面 这里有一点问题就是我一开始使用的是qsort: int cmp(con ...
- ascii 和 byte以及UTF-8的转码规则
多年来闲麻烦,只记录笔记,不曾编写BLOG,本文为原创,如需转载请标明出处 废话不说,直奔主题 ascii 计算机只接受 “高”.“低”电压,所以使用二进制 1 和 0 分别代表高低电压 ...
- 【BZOJ1237】配对(贪心,DP)
题意:有n个a[i]和b[i],调整顺序使abs(a[i]-b[i])之和最小,但a[i]<>b[i].保证所有 Ai各不相同,Bi也各不相同. 30%的数据满足:n <= 104 ...
- Codeforces 658B Bear and Displayed Friends【set】
题目链接: http://codeforces.com/contest/658/problem/B 题意: 给定元素编号及亲密度,每次插入一个元素,并按亲密度从大到小排序.给定若干操作,回答每次询问的 ...
- Codeforces 653B Bear and Compressing【DFS】
题目链接: http://codeforces.com/problemset/problem/653/B 题意: 要求你构造一个长度为n的字符串使得通过使用m个操作,最终获得字符a.已知第i个操作将字 ...
- 寒武纪camp网络测试赛
寒武纪camp网络测试赛 地址:oj点我进入 A(树形dp+树链剖分) 题意: 分析: 考虑树形dp,f0(x)和f1(x)分别表示以x为根的子树,不取x点或取x点的最大合法子集的元素个数 那么对于一 ...
- 简论远程通信(RPC,Webservice,RMI,JMS的区别)
RPC(Remote Procedure Call Protocol)RPC使用C/S方式,采用http协议,发送请求到服务器,等待服务器返回结果.这个请求包括一个参数集和一个文本集,通常形成“cla ...