YTU 1098: The 3n + 1 problem
1098: The 3n + 1 problem
时间限制: 1 Sec 内存限制: 64 MB
提交: 368 解决: 148
题目描述
of numbers will be generated for n = 22: 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 It is conjectured (but not yet proven) that this algorithm will terminate at n = 1 for every integer n. Still, the conjecture holds for all integers up to at least 1, 000,
000. For an input n, the cycle-length of n is the number of numbers generated up to and including the 1. In the example above, the cycle length of 22 is 16. Given any two numbers i and j, you are to determine the maximum cycle length over all numbers between
i and j, including both endpoints.
输入
输出
on one line and with one line of output for each line of input.
样例输入
1 10
100 200
201 210
900 1000
样例输出
1 10 20
100 200 125
201 210 89
900 1000 174
#include <stdio.h>
#include <stdlib.h>
int main()
{
int a,b,i,j=0,m=0,c=0;
for(; ~scanf("%d%d",&a,&b); m=0)
{
for(c=a>b?b:a; c<=(a>b?a:b); c++)
{
i=c,j=0;
for(; i!=1; j++)
if(i%2==0)i/=2;
else i=i*3+1;
m=j>m?j:m;
}
printf("%d %d %d\n",a,b,m+1);
}
return 0;
}
YTU 1098: The 3n + 1 problem的更多相关文章
- 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)
Problem A: The 3n + 1 problem Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 14 Solved: 6[Submit][St ...
- UVa 100 - The 3n + 1 problem(函数循环长度)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏
The 3n + 1 problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 53927 Accepted: 17 ...
- uva----(100)The 3n + 1 problem
The 3n + 1 problem Background Problems in Computer Science are often classified as belonging to a ...
- 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)
// The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...
- 100-The 3n + 1 problem
本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...
- PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)
The 3n + 1 problem Background Problems in Computer Science are often classified as belonging to a ...
- UVA 100 - The 3n+1 problem (3n+1 问题)
100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...
- classnull100 - The 3n + 1 problem
新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正 The 3n + 1 problem Background Problems in Computer Science are o ...
随机推荐
- Oracle数据库之初步接触
每个Oracle数据库都是数据的集合,这些数据包含在一个或多个文件中.数据库有物理和逻辑两种结构.在开发应用程序的过程中,会创建诸如表和索引这样的结构,这些结构用于数据行的存储和查询.可以为对象的名称 ...
- python007 Python3 数字(Number)
var1 = 1 var2 = 10 您也可以使用del语句删除一些数字对象的引用.del语句的语法是: del var1[,var2[,var3[....,varN]]]] 您可以通过使用del语句 ...
- Leetcode 313.超级丑数
超级丑数 编写一段程序来查找第n个超级丑数. 超级丑数是指其所有质因数都是长度为 k 的质数列表 primes 中的正整数. 示例: 输入: n = 12, primes = [2,7,13,19] ...
- Leetcode 304.二维区域和检索-矩阵不可变
二维区域和检索 - 矩阵不可变 给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, c ...
- HDU-2159 FATE,01背包变形
FATE 这道题和完全背包十分类似,只不过加上了忍耐度这个条件限制,所以很正常的想到用三维数组来模拟.但背包问题优化只有一层循环,这里当然也可以把种类这一层省略.d[i][j]表示杀i只怪耗费忍耐度为 ...
- cp: omitting directory解决方案
cp: omitting directory是因为目录下面还有目录.应该使用递归方法.需要加入-r参数. 及:cp -r 该目录名.
- CodeForces - 356A Knight Tournament
http://codeforces.com/problemset/problem/356/A 首先理解题意 每次给出l 和r 在l - r之间还有资格的选手中得出一个胜者 暴力思路: 首先维护还有资 ...
- lombok注解简化实体类getting 和 setting 方法
实体类注解,将以往的get/set方法简化为标签注解,让代码看着更简洁. Maven依赖: <dependency> <groupId>org.projectlombok< ...
- SpringDataRedis使用说明常用方法
stringRedisTemplate.opsForValue().set("test", "100",60*10,TimeUnit.SECONDS);//向r ...
- Eclipse注释模板配置
不过感觉作用不大,因为@date这些不是标准的Java注释.