bzoj 4596
4596: [Shoi2016]黑暗前的幻想乡
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 257 Solved: 152
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
Sample Output
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define N 30
#define mod 1000000007
struct edge
{
int u[],v[],size;
}x[N];
int n;
ll ans;
ll a[N][N],d[N][N],g[N][N];
ll gauss()
{
ll f=,ret=;
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
{
ll A=g[i][i],B=g[j][i];
while(B)
{
ll t=A/B; A%=B; swap(A,B);
for(int k=i;k<=n;++k)
g[i][k]=((g[i][k]-t*g[j][k]%mod)%mod+mod)%mod;
for(int k=i;k<=n;++k) swap(g[i][k],g[j][k]);
f=-f;
}
}
if(!a[i][i]) return ;
}
for(int i=;i<=n;++i) ret=ret*g[i][i]%mod;
ret=(ret*f%mod+mod)%mod;
return ret;
}
void solve()
{
for(int i=;i<<<n;++i)
{
memset(a,,sizeof(a));
memset(g,,sizeof(g));
memset(d,,sizeof(d));
int tot=;
for(int j=;j<=n;++j) if(i&(<<(j-)))
{
++tot;
for(int k=;k<=x[j].size;++k)
{
int u=x[j].u[k],v=x[j].v[k];
a[u][u]++; a[v][v]++;
d[u][v]++; d[v][u]++;
}
}
for(int j=;j<=n;++j)
for(int k=;k<=n;++k) g[j][k]=a[j][k]-d[j][k];
if(n%==tot%) ans+=gauss();
else ans-=gauss();
ans=(ans%mod+mod)%mod;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
}
int main()
{
scanf("%d",&n);
--n;
for(int i=;i<=n;++i)
{
scanf("%d",&x[i].size);
for(int j=;j<=x[i].size;++j) scanf("%d%d",&x[i].u[j],&x[i].v[j]);
}
// if(!n)
// {
// puts("1");
// return 0;
// }
solve();
return ;
}
bzoj 4596的更多相关文章
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- 【Learning】矩阵树定理 Matrix-Tree
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...
- 生成树计数及应用 Matrix-Tree
例:给定一个图,图上每条边是红色或蓝色 求恰好有K条红边的生成树的个数,N<=50. Matrix-Tree定理 对于限制条件可以利用多项式,把红边边权设为X,蓝边边权设为1. 最后求行列式得到 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- 【Floyd最短路】第七届福建省赛 FZU Problem 2271 X
http://acm.fzu.edu.cn/problem.php?pid=2271 [题意] 给定一个n个点和m条边的无向连通图,问最多可以删去多少条边,使得每两个点之间的距离(最短路长度)不变. ...
- X230 安装 EI Capitan 10.11.5 驱动篇
/* 键盘又换回了 美蓓亚键盘 缩写nmb 虽然比群光软 但是手感真的出色,貌似x宝没有这个代工厂的键盘(全新,非拆机,而且是标准us阵列,背光版) 有人肯定会问,博主这么纠结键盘干嘛? ...
- react.js 渲染一个列表的实例
//引入模块 import React,{Component} from 'react'; import ReactDOM from 'react-dom'; //定义一个要渲染的数组 let use ...
- 线段上的格点 辗转相除法(GCD)
/*问题描述:线段上的格点给定平面上的两个格点 P1 = (x1, y1) ; P2 = (x2, y2) 线段P1 P2上,除P1 和 P2以外一共有几个格点*//*分析过程在格点上画P1(0,5) ...
- BZOJ1585: [Usaco2009 Mar]Earthquake Damage 2 地震伤害
n<=3000个点m<=20000条无向边的图,有p<=n个出发点,每个出发点都不可拆,现拆一些点使每个出发点都不能到达点1,求最小点数. 简单的最小割.每个点拆成两个x和y,无向边 ...
- navicat 无法连接到腾讯云Mysql
远程连接进入服务器 远程连接进入服务器之后,输入命令mysql -u root -p 之后输入mysql密码,进入mysql 命令环境 设置开启远程登录 GRANT ALL PRIVILEGES ON ...
- 使用Spring Data Redis操作Redis(单机版)
说明:请注意Spring Data Redis的版本以及Spring的版本!最新版本的Spring Data Redis已经去除Jedis的依赖包,需要自行引入,这个是个坑点.并且会与一些低版本的Sp ...
- Google的Guava类库简介(转)
说明:信息虽然有点旧,至少可以先了解个大概. Guava是一个Google的基于Java的类库集合的扩展项目,包括collections, caching, primitives support, c ...
- Linux 网络工具
1 nethogs nethogs 是一个免费的工具,当要查找哪个 PID (注:即 process identifier,进程 ID) 给你的网络流量带来了麻烦时,它是非常方便的.它按每个进程来分组 ...
- JVM原理及内存溢出
JVM原理及内存溢出