bzoj 4596
4596: [Shoi2016]黑暗前的幻想乡
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 257 Solved: 152
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
Sample Output
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define N 30
#define mod 1000000007
struct edge
{
int u[],v[],size;
}x[N];
int n;
ll ans;
ll a[N][N],d[N][N],g[N][N];
ll gauss()
{
ll f=,ret=;
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
{
ll A=g[i][i],B=g[j][i];
while(B)
{
ll t=A/B; A%=B; swap(A,B);
for(int k=i;k<=n;++k)
g[i][k]=((g[i][k]-t*g[j][k]%mod)%mod+mod)%mod;
for(int k=i;k<=n;++k) swap(g[i][k],g[j][k]);
f=-f;
}
}
if(!a[i][i]) return ;
}
for(int i=;i<=n;++i) ret=ret*g[i][i]%mod;
ret=(ret*f%mod+mod)%mod;
return ret;
}
void solve()
{
for(int i=;i<<<n;++i)
{
memset(a,,sizeof(a));
memset(g,,sizeof(g));
memset(d,,sizeof(d));
int tot=;
for(int j=;j<=n;++j) if(i&(<<(j-)))
{
++tot;
for(int k=;k<=x[j].size;++k)
{
int u=x[j].u[k],v=x[j].v[k];
a[u][u]++; a[v][v]++;
d[u][v]++; d[v][u]++;
}
}
for(int j=;j<=n;++j)
for(int k=;k<=n;++k) g[j][k]=a[j][k]-d[j][k];
if(n%==tot%) ans+=gauss();
else ans-=gauss();
ans=(ans%mod+mod)%mod;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
}
int main()
{
scanf("%d",&n);
--n;
for(int i=;i<=n;++i)
{
scanf("%d",&x[i].size);
for(int j=;j<=x[i].size;++j) scanf("%d%d",&x[i].u[j],&x[i].v[j]);
}
// if(!n)
// {
// puts("1");
// return 0;
// }
solve();
return ;
}
bzoj 4596的更多相关文章
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- 【Learning】矩阵树定理 Matrix-Tree
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...
- 生成树计数及应用 Matrix-Tree
例:给定一个图,图上每条边是红色或蓝色 求恰好有K条红边的生成树的个数,N<=50. Matrix-Tree定理 对于限制条件可以利用多项式,把红边边权设为X,蓝边边权设为1. 最后求行列式得到 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- BZOJ3027 - [CEOI2004]Sweet
Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...
- 只有代码不会撒谎,如何通过Spring boot源码查看其对于各个框架的默认配置
我发现很多开发对于看源码都有种恐惧心理,其实不必这样,大部分优秀的源码写的都挺直观的,很多时候,你在搜索引擎上搜到的一些东西并不一定是对的,但源码肯定造不了假,毕竟不管你怎么想,它就在那里,该是什么意 ...
- Codeforces 513G1 513G2 Inversions problem [概率dp]
转自九野:http://blog.csdn.net/qq574857122/article/details/43643135 题目链接:点击打开链接 题意: 给定n ,k 下面n个数表示有一个n的排列 ...
- JavaScript 将行结构数据转化为树结构数据源(高效转化方案)
js接收到后台的数据如下 /// 部门信息 var departRows = [{ parentDepartId: 'root', departId: 'DC', departName: '集团' } ...
- 2016 ACM/ICPC 区域赛(北京) E 题 bfs
https://vjudge.net/problem/UVALive-7672 题意 输入一个五位数n 问由12345变到n的操作最少次数 不可达输出-1 有三种操作 1.交换相邻的位置 次数不 ...
- Ubuntu 16.04安装QQ(不一定成功)
注意1:如果是刚新装的系统,可以正常安装,但是,如果你已经装了很多软件,千万不要安装,因为会把系统上一般的依赖包和你之前装的软件全部卸载掉!甚至将桌面Dock都会卸载!最终只能重装Ubuntu解决. ...
- 【scrapy】Item及Spider
Items Item objects are simple containers used to collect the scraped data.They provide a dictionary- ...
- 鼠标放上去Div旋转特效代码
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 【转】TestNG执行顺序控制
1.class执行顺序控制---testng.xml之preserve-order preserve-order:用来控制<test>里面所有<classes>的执行顺序.&l ...
- Hibernate基础-HelloWord
1. ORM :ORM (Object /Relation Mapping ): 对象/关系映射(理解) 1) ORM 主要解决对象 -关系的映射 2) .ORM的思想:将关系数据 ...